基于FPGA的运动控制卡采用脉冲加方向的闭环控制方式,具有结构简单,集成度高、实时性好等优点。从硬件的构成、设计和算法实现等方面入手,阐述了运动控制卡的设计和开发。用硬件描述语言VHDL(very high speed integrated circuitHDL)和...基于FPGA的运动控制卡采用脉冲加方向的闭环控制方式,具有结构简单,集成度高、实时性好等优点。从硬件的构成、设计和算法实现等方面入手,阐述了运动控制卡的设计和开发。用硬件描述语言VHDL(very high speed integrated circuitHDL)和原理图结合的方式对FPGA编程实现系统的主要硬件逻辑和算法,从而提高了系统的灵活性和移植性。在硬件算法上,采用乒乓操作处理高速的分频倍数数据流,提高了系统的实时性和控制精度;并且提出了一种基于加二计数器的分频算法,实现任意分频倍数的分频。利用嵌入式调试工具SignalTap对运动控制卡进行硬件调试和仿真,给出了相应的误差分析。展开更多
在计算机控制的随动系统实验平台下,提出了通过数据采集卡在Matlab/Simulink环境下用RTW(real time windows target)实时仿真工具箱对随动系统速度反馈、位置反馈精确地实时检测的方案,实现了位置环的有效控制,并且实现了良好的定位...在计算机控制的随动系统实验平台下,提出了通过数据采集卡在Matlab/Simulink环境下用RTW(real time windows target)实时仿真工具箱对随动系统速度反馈、位置反馈精确地实时检测的方案,实现了位置环的有效控制,并且实现了良好的定位功能。其控制器的结构简单可见,控制效果可与专用控制卡相媲美,该方法可以缩短开发周期,节省开发费用,丰富了电气工程及自动化专业学生综合性实验内容,加深了学生对随动系统和伺服控制的理解,完全能满足课程的教学需要。展开更多
文摘基于FPGA的运动控制卡采用脉冲加方向的闭环控制方式,具有结构简单,集成度高、实时性好等优点。从硬件的构成、设计和算法实现等方面入手,阐述了运动控制卡的设计和开发。用硬件描述语言VHDL(very high speed integrated circuitHDL)和原理图结合的方式对FPGA编程实现系统的主要硬件逻辑和算法,从而提高了系统的灵活性和移植性。在硬件算法上,采用乒乓操作处理高速的分频倍数数据流,提高了系统的实时性和控制精度;并且提出了一种基于加二计数器的分频算法,实现任意分频倍数的分频。利用嵌入式调试工具SignalTap对运动控制卡进行硬件调试和仿真,给出了相应的误差分析。
文摘在计算机控制的随动系统实验平台下,提出了通过数据采集卡在Matlab/Simulink环境下用RTW(real time windows target)实时仿真工具箱对随动系统速度反馈、位置反馈精确地实时检测的方案,实现了位置环的有效控制,并且实现了良好的定位功能。其控制器的结构简单可见,控制效果可与专用控制卡相媲美,该方法可以缩短开发周期,节省开发费用,丰富了电气工程及自动化专业学生综合性实验内容,加深了学生对随动系统和伺服控制的理解,完全能满足课程的教学需要。