期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Multi-Channel Force Control System for Static Loading
1
作者 陈彩可 王军政 +1 位作者 马立玲 李金仓 《Journal of Beijing Institute of Technology》 EI CAS 2003年第S1期1-6,共6页
An eight-channel force loading system is presented, which adopts position control system and force control system switching model, small flow servo valve controlled capacious cylinder system scheme, intelligent PID al... An eight-channel force loading system is presented, which adopts position control system and force control system switching model, small flow servo valve controlled capacious cylinder system scheme, intelligent PID algorithm and distributed load approach. Through the analyses of the equivalent model of valve controlled cylinder force subsystem, a controller based on intelligent PID algorithm is designed, which is not sensitive to the variation of parameters such as environmental stiffness. According to the coupling of multiple load channels, a distributed load approach is employed in the superior monitor computer. Experimental results show that the system designed has high precision and robustness. 展开更多
关键词 electro-hydraulic servo loading system static force loading force control
下载PDF
Adaptive Fuzzy Torque Control of Passive Torque Servo Systems Based on Small Gain Theorem and Input-to-state Stability 被引量:11
2
作者 WANG Xingjian WANG Shaoping ZHAO Pan 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2012年第6期906-916,共11页
Passive torque servo system (PTSS) simulates aerodynamic load and exerts the load on actuation system, but PTSS endures position coupling disturbance from active motion of actuation system, and this inherent disturb... Passive torque servo system (PTSS) simulates aerodynamic load and exerts the load on actuation system, but PTSS endures position coupling disturbance from active motion of actuation system, and this inherent disturbance is called extra torque. The most important issue for PTSS controller design is how to eliminate the influence of extra torque. Using backstepping technique, adaptive fuzzy torque control (AFTC) algorithm is proposed for PTSS in this paper, which reflects the essential characteristics of PTSS and guarantees transient tracking performance as well as final tracking accuracy. Takagi-Sugeno (T-S) fuzzy logic system is utilized to compensate parametric uncertainties and unstructured uncertainties. The output velocity of actuator identified model is introduced into AFTC aiming to eliminate extra torque. The closed-loop stability is studied using small gain theorem and the control system is proved to be semiglobally uniformly ultimately bounded. The proposed AFTC algorithm is applied to an electric load simulator (ELS), and the comparative experimental results indicate that AFTC controller is effective for PTSS. 展开更多
关键词 flight simulation adaptive control fuzzy control passive torque servo system electric load simulator extra torque small gain theorem input-to-state stability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部