The current research of electro-hydraulic servo valves mainly focuses on the vibration, pressure oscillating and source of noise. Unfortunately, literatures relating to the study of the influence of the magnetic reluc...The current research of electro-hydraulic servo valves mainly focuses on the vibration, pressure oscillating and source of noise. Unfortunately, literatures relating to the study of the influence of the magnetic reluctances of the magnetic elements are rarely available. This paper aims to analyze the influence of the magnetic reluctances of the magnetic elements on torque motor. Considering these magnetic reluctances ignored in previous literatures, a new mathematical model of servo valve torque motor is developed and proposed based on the fundamental laws of electromagnetism. By using this new mathematical model and the previous models, electromagnetic torque constant and magnetic spring stiffness are evaluated for a given set of torque motor parameters. A computer simulation by using AMESim software is also performed for the same set of torque motor parameters to verify the proposed model. The theoretical results of electromagnetic torque constant and magnetic spring stiffness evaluated by the proposed model render closer agreement with the simulation results than those evaluated by the previous models. In addition, an experimental measurement of the magnetic flux densities in the air-gaps is carried out by using SFL218 servo valve torque motor. Compared with the theoretical results of the magnetic flux densities in the air-gaps evaluated by the previous models, the theoretical results evaluated by the proposed model also show better agreement with the experimental data. The proposed model shows the influence of the magnetic reluctances of the magnetic elements on the servo valve torque motor, and offers modified and analytical expressions to electromagnetic torque constant and magnetic spring stiffness. These modified and analytical expressions could provide guidance more accurately for a linear control design approach and sensitivity analysis on electro-hydraulic servo valves than the previous expressions.展开更多
Recent technological advancements have propelled remarkable progress in servo systems,resulting in their extensive utilization across various high-end applications.A comprehensive review of high-quality servo system t...Recent technological advancements have propelled remarkable progress in servo systems,resulting in their extensive utilization across various high-end applications.A comprehensive review of high-quality servo system technologies,focusing specifically on electrical motor topologies and control strategies is presented.In terms of motor topology,this study outlines the mainstream servo motors used across different periods,as well as the latest theories and technologies surrounding contemporary servo motors.In terms of control strategies,two well-established approaches are presented:field-oriented control and direct torque control.Additionally,it discusses advanced control strategies employed in servo systems,such as model predictive control(MPC)and fault tolerance control,among others.展开更多
In order to meet the precision requirements and tracking performance of the continuous rotary motor electro-hydraulic servo system under unknown strong non-linear and uncertain strong disturbance factors,such as dynam...In order to meet the precision requirements and tracking performance of the continuous rotary motor electro-hydraulic servo system under unknown strong non-linear and uncertain strong disturbance factors,such as dynamic uncertainty and parameter perturbation,an improved active disturbance rejection control(ADRC)strategy was proposed.The state space model of the fifth order closed-loop system was established based on the principle of valve-controlled hydraulic motor.Then the three parts of ADRC were improved by parameter perturbation and external disturbance;the fast tracking differentiator was introduced into linear and non-linear combinations;the nonlinear state error feedback was proposed using synovial control;the extended state observer was determined by nonlinear compensation.In addition,the grey wolf algorithm was used to set the parameters of the three parts.The simulation and experimental results show that the improved ADRC can realize the system frequency 12 Hz when the tracking accuracy and response speed meet the requirements of double ten indexes,which lay foundation for the motor application.展开更多
In allusion to the problem of friction,leakage,vibration and noise existing in continuous rotary motor electro-hydraulic servo system,highly nonlinearity and uncertainties affecting the system performance,based on the...In allusion to the problem of friction,leakage,vibration and noise existing in continuous rotary motor electro-hydraulic servo system,highly nonlinearity and uncertainties affecting the system performance,based on the transfer function of electro-hydraulic servo system,a kind of Pol-Ind friction model is proposed.The parameters of Pol-Ind friction model are identified and the accurate mathematical model of friction torque is obtained by experiment.The self-correcting wavelet neural network(WNN)controller is proposed,and Adam optimization algorithm is used to perform gradient optimization on scale factor and displacement factor in wavelet basis function,so as to improve the speed and precision of parameter optimization.Through comparative simulation analysis,it is clearly that the self-correcting WNN controller can effectively improve the frequency response and tracking accuracy of continuous rotary motor electro-hydraulic servo system.展开更多
In order to suppress the periodic interference of the continuous rotary electro-hydraulic servo motor,this paper makes the motor tracking the periodic signals with high accuracy,and improves the influence of friction ...In order to suppress the periodic interference of the continuous rotary electro-hydraulic servo motor,this paper makes the motor tracking the periodic signals with high accuracy,and improves the influence of friction interference to the performance of continuous rotary electro-hydraulic servo motor.The mathematic model of the electro-hydraulic position servo system of the continuous rotary motor was established,and the compound control method was adopted based on the repetitive control,feed forward and PID to suppress the friction interference.Through the simulation,the result confirms that the compound control method decreases the tracking error of the system,increases the robust performance of the system and improves the performance of the continuous rotary electro-hydraulic servo motor.展开更多
This paper proposes a method that rotation angle of servo motor and distance values of ultrasonic sensor are used for tracking an object in real-time while the robot keeps regular distance.Object detection distance wi...This paper proposes a method that rotation angle of servo motor and distance values of ultrasonic sensor are used for tracking an object in real-time while the robot keeps regular distance.Object detection distance widens by using ultrasonic sensors and object recognition,and movement of robot is controlled by angle of servo motor and distance of ultrasonic sensors.Not adopting the existing tracking methods:camera,laser-infrared(LRF)and many ultrasonic sensors,the proposed method proves that it is possible to track object using ultrasonic sensor and servo motor.Trajectory of robot is represented and analysed according to movement of object in limited conditions.展开更多
With the background of the control of additional mechanical force droplet transfer in MIG/MAG welding, regarding the AC servo motor as core, a novel oscillating wire feeding system has been developed with excellent pe...With the background of the control of additional mechanical force droplet transfer in MIG/MAG welding, regarding the AC servo motor as core, a novel oscillating wire feeding system has been developed with excellent performances of control and dynamic acceleration which is tested. System constitution and operation principle are introduced in this paper. Influences of parameters on dynamic acceleration performance are analyzed and discussed emphatically, such as oscillating frequency, oscillating amplitude and draw-back speed. Experimental result indicates that according to the technique of welding control, the novel wire feeding system responds rapidly to various kinds of control orders of wire feeding and draw-back, and realizes flexible control of welding wire axial movement, including dynamic shifting,oscillating and so on.展开更多
In order to study the influence of inlet and outlet pressure difference and triangular buffer groove on the internal leakage of continuous rotary electro-hydraulic servo motor,the flow field model of motor with and wi...In order to study the influence of inlet and outlet pressure difference and triangular buffer groove on the internal leakage of continuous rotary electro-hydraulic servo motor,the flow field model of motor with and without triangular groove is established respectively.The mesh model is divided.The pressure distribution of the internal flow field under different pressure difference is analyzed by Fluent.Then,the gap leakage under different pressure difference is calculated,and the leakage curve is obtained.Finally,continuous rotary electro-hydraulic servo motor experimental system is built to conduct the internal leakage test,and the leakage under different pressure difference is measured and compared with the simulation results.The results show that the occurrence of leakage in the motor can be reduced by setting the triangular buffer groove on the flow plate,the simulation and experimental results are consistent.It can be concluded that the larger the pressure difference between the inlet and the outlet of the motor,the larger the gap leakage.The research lays foundation for the application of continuous rotary electro-hydraulic servo motor.展开更多
Fiber winding tension is an important factor in the molding techniques of composite material which influences the quality of winding product directly, and the tension control is a key technique in fiber winding techni...Fiber winding tension is an important factor in the molding techniques of composite material which influences the quality of winding product directly, and the tension control is a key technique in fiber winding techniques. This paper introduces a closed-loop tension control system with the programmable logic controller (PLC) with function modules as its control kernel, the alternating current (AC) servo motor as execute element and the radius-following device to accomplish the real-time radius compensation. The mechanism of the tension control system is analyzed and the numerical model is set up. The compensation technique of the radius of the scroll is analyzed. Experimental results show that the system is well qualified with high control precision and high reaction speed.展开更多
The vessel heave motion caused by wave action increases the difficulty of installing offshore wind equipment.On-board wave heave compensation devices have therefore become increasingly critical in ensuring the stabili...The vessel heave motion caused by wave action increases the difficulty of installing offshore wind equipment.On-board wave heave compensation devices have therefore become increasingly critical in ensuring the stability and safety of the gangway and working platform.This study accordingly improves the compensation effect of such devices by developing a wave heave compensation model and designing an optimized backstepping control method.First,a model of the compensation system including the servo motor and electric cylinder is established by using the mechanism method.Second,a backstepping control method is designed to track the vessel heave motion,and particle swarm optimization is applied to optimize the control parameters.Finally,MATLAB/Simulink is used to simulate the application of the optimized backstepping controller,then regular and irregular heave motions are applied as input to a Stewart platform to evaluate the effectiveness of the control method.The experimental results show that the compensation efficiency provided by the proposed optimized backstepping control method is larger than 75.0%.展开更多
Fast response and stable torque output are crucial to the performance of electric screw presses. This paper describes the design of a direct torque control (DTC) system for speeding up torque response and reducing t...Fast response and stable torque output are crucial to the performance of electric screw presses. This paper describes the design of a direct torque control (DTC) system for speeding up torque response and reducing the starting current of electric screw presses and its application to the J58K series of numerical control electric screw presses with a dual-motor drive. The DTC drive system encompasses speed control, torque reference control, and switching frequency control. Comparison of the DTC dual-AC induction motor drive with corresponding AC servo motor drive showed that for the J58K-315 electric screw press, the DTC drive system attains a higher maximum speed (786 r/min) within a shorter time (1.13 s) during a 250 nun stroke and undergoes smaller rise in temperature (42.0 ℃) in the motor after running for 2 h at a 12 min-1 strike frequency than the AC servo motor drive does (751 r/min within 1.19 s, and 50.6 ℃ rise). Moreover, the DTC AC induction motor drive, with no need for a tachometer or position encoder to feed back the speed or position of the motor shaft, enjoys increased reliability in a strong-shock work environment.展开更多
High-power servo motor is widely employed as a necessary actuator in flight vehicles.The urgent problem to be solved restraining the working performance of servo motor is no longer the torque and power,but the heat di...High-power servo motor is widely employed as a necessary actuator in flight vehicles.The urgent problem to be solved restraining the working performance of servo motor is no longer the torque and power,but the heat dissipation capability under high-power working conditions,which may cause the overheat,even burn down of motor or other potential safety hazards.Therefore,a structure of mini cooling channels with appropriate channel density is designed in accordance with the non-uniform heat flux of servo motor in this paper.Combined with the regenerative cooling method,the cryogenic fuel supercritical methane is served as the coolant,which is easy to be obtained from the propulsion system,and the heat from the servo motor can be transported to the combustion for reusing.According to the actual working cases of servo motor,a numerical model is built to predict the thermal performance of cooling channels.In order to better represent the secondary flow of coolant in the cooling channels,especially the turbulent mixed flow in the manifold,the k-εRNG model with enhanced wall treatment is employed resulting from its precise capacity to simulate the secondary and wall shear flow.On this basis,the heat transfer mechanism and thermal performance of cooling channels,as well as the influence of various heat flux ratios are investigated,which can offer an in-depth understanding of restraining excessive temperature rise and non-uniformity distribution of the servo motor.By the calculation results,it can be concluded that under the adjustment of the channel density according to the corresponding heat flux,the positive role of the appropriate channel density and the manifolds on heat transfer is manifested.Moreover,the maximum temperature difference of heating wall can be kept within an acceptable range of the servo motor.The heat transfer coefficient in the manifold is nearly 2–4 times higher compared with that in the straight cooling channels.The effect of buoyancy force cannot be neglected even in the manifold with turbulent mixed flow,and the pattern of heat transfer is mixed convection one in all the flow regions.The thermal resistance R and overall Nusselt number Nu are affected remarkably by all the operation parameters studied in the paper,except the pressure,while the overall thermal performance coefficientηdemonstrates differently.The strong impact of heat flux ratio is implied on thermal performance of the cooling channels.Higher heat flux ratio results in the stronger non-uniform temperature distribution.Meanwhile,only tiny temperature differences of the fluid and inner wall in manifolds among various heat flux ratios are demonstrated,resulting from the positive effect of mixture flow on heat transfer.展开更多
In order to solve the problem of pressure shock on the continuous rotary electro-hydraulic servo motor,the mathematical models of pressure gradient under the structure of pre-compressed chamber and U-shaped groove wer...In order to solve the problem of pressure shock on the continuous rotary electro-hydraulic servo motor,the mathematical models of pressure gradient under the structure of pre-compressed chamber and U-shaped groove were established.The optimal structure dimensions of the pre-compressed chamber and the U-shaped groove were determined.The fluid models were established by Solidworks under the four structures of triangular groove,triangular groove with pre-compression chamber,U-shaped groove and U-shaped groove with pre-compression chamber.Simulation analysis of depressurization process of fluid models was performed based on FLUENT.The pressure nephograms of different buffer structures were compared and analyzed,and the pressure change curves and pressure gradient change curves in the process of depressurization were obtained.The results show that the optimal edge length of the pre-compressed chamber of continuous rotary electro-hydraulic servo motor is 20 mm in the process of decompression.The pressure reduction effect is the best when the width of the U-shaped groove is 1.5 mm and the depth is 1.65 mm.The U-shaped groove structure with pre-compression chamber is more conducive to alleviate the pressure shock phenomenon of the motor compared with different combine buffer structures.展开更多
Aiming at the deficiency of diagnosis method based on vibration signal,a novel method based on speed signal with singular value decomposition and Hilbert transform(SVD-HT)is proposed.The fault diagnosis mechanism base...Aiming at the deficiency of diagnosis method based on vibration signal,a novel method based on speed signal with singular value decomposition and Hilbert transform(SVD-HT)is proposed.The fault diagnosis mechanism based on the speed signal is obtained by constructing the shaft misalignment fault model firstly.Then the SVD-HT method is applied to the processing of the speed signal.The accuracy of the SVD-HT method is verified by comparing the diagnosis results of the order spectrum method and the SVD-HT method.After that,the diagnosis results based on vibration signal and speed signal under no-load and load patterns are compared.Under the no-load pattern,the amplitudes of the speed signal components f_(r),2f_(r) and 4f_(r) are linear with the misalignment.In addition,under the load pattern,the amplitudes of the speed signal components f_(r),2f_(r) and 4f_(r) have a linear relationship with the load.However,the diagnosis result of the vibration signal does not have the above characteristics.The comparison results verify the robustness and reliability of the speed signal and SVD-HT method.The method presented in this paper provides a novel way for misalignment fault diagnosis.展开更多
In this paper, taking two degrees of freedom on the armature–flapper assembly into account, a seventh-order model is deduced and proposed for the dynamic response of a two-stage electro-hydraulic servo valve from non...In this paper, taking two degrees of freedom on the armature–flapper assembly into account, a seventh-order model is deduced and proposed for the dynamic response of a two-stage electro-hydraulic servo valve from nonlinear equations. These deductions are based on fundamental laws of electromagnetism, fluid, and general mechanics. The coefficients of the proposed seventhorder model are derived in terms of servo valve physical parameters and fluid properties explicitly.For validating the results of the proposed model, an AMESim simulation model based on physical laws and the existing low-order models validated by other researchers through experiments are used to compare with the seventh-order model. The results show that the seventh-order model can reflect the physical behavior of the servo valve more explicitly than the existing low-order models and it could provide guidance more easily for a linear control design approach and sensitivity analysis than the AMESim simulation model.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.50975055)
文摘The current research of electro-hydraulic servo valves mainly focuses on the vibration, pressure oscillating and source of noise. Unfortunately, literatures relating to the study of the influence of the magnetic reluctances of the magnetic elements are rarely available. This paper aims to analyze the influence of the magnetic reluctances of the magnetic elements on torque motor. Considering these magnetic reluctances ignored in previous literatures, a new mathematical model of servo valve torque motor is developed and proposed based on the fundamental laws of electromagnetism. By using this new mathematical model and the previous models, electromagnetic torque constant and magnetic spring stiffness are evaluated for a given set of torque motor parameters. A computer simulation by using AMESim software is also performed for the same set of torque motor parameters to verify the proposed model. The theoretical results of electromagnetic torque constant and magnetic spring stiffness evaluated by the proposed model render closer agreement with the simulation results than those evaluated by the previous models. In addition, an experimental measurement of the magnetic flux densities in the air-gaps is carried out by using SFL218 servo valve torque motor. Compared with the theoretical results of the magnetic flux densities in the air-gaps evaluated by the previous models, the theoretical results evaluated by the proposed model also show better agreement with the experimental data. The proposed model shows the influence of the magnetic reluctances of the magnetic elements on the servo valve torque motor, and offers modified and analytical expressions to electromagnetic torque constant and magnetic spring stiffness. These modified and analytical expressions could provide guidance more accurately for a linear control design approach and sensitivity analysis on electro-hydraulic servo valves than the previous expressions.
基金Supported by the National Natural Science Foundation of China under Major Project 51991380.
文摘Recent technological advancements have propelled remarkable progress in servo systems,resulting in their extensive utilization across various high-end applications.A comprehensive review of high-quality servo system technologies,focusing specifically on electrical motor topologies and control strategies is presented.In terms of motor topology,this study outlines the mainstream servo motors used across different periods,as well as the latest theories and technologies surrounding contemporary servo motors.In terms of control strategies,two well-established approaches are presented:field-oriented control and direct torque control.Additionally,it discusses advanced control strategies employed in servo systems,such as model predictive control(MPC)and fault tolerance control,among others.
基金Project(51975164)supported by the National Natural Science Foundation of ChinaProject(2019-KYYWF-0205)supported by the Fundamental Research Foundation for Universities of Heilongjiang Province,China。
文摘In order to meet the precision requirements and tracking performance of the continuous rotary motor electro-hydraulic servo system under unknown strong non-linear and uncertain strong disturbance factors,such as dynamic uncertainty and parameter perturbation,an improved active disturbance rejection control(ADRC)strategy was proposed.The state space model of the fifth order closed-loop system was established based on the principle of valve-controlled hydraulic motor.Then the three parts of ADRC were improved by parameter perturbation and external disturbance;the fast tracking differentiator was introduced into linear and non-linear combinations;the nonlinear state error feedback was proposed using synovial control;the extended state observer was determined by nonlinear compensation.In addition,the grey wolf algorithm was used to set the parameters of the three parts.The simulation and experimental results show that the improved ADRC can realize the system frequency 12 Hz when the tracking accuracy and response speed meet the requirements of double ten indexes,which lay foundation for the motor application.
基金Supported by the National Natural Science Foundation of China(No.51975164)the China Scholarship Council(No.201908230358)the Fundamental Research Fundation for Universities of Heilongjiang Province。
文摘In allusion to the problem of friction,leakage,vibration and noise existing in continuous rotary motor electro-hydraulic servo system,highly nonlinearity and uncertainties affecting the system performance,based on the transfer function of electro-hydraulic servo system,a kind of Pol-Ind friction model is proposed.The parameters of Pol-Ind friction model are identified and the accurate mathematical model of friction torque is obtained by experiment.The self-correcting wavelet neural network(WNN)controller is proposed,and Adam optimization algorithm is used to perform gradient optimization on scale factor and displacement factor in wavelet basis function,so as to improve the speed and precision of parameter optimization.Through comparative simulation analysis,it is clearly that the self-correcting WNN controller can effectively improve the frequency response and tracking accuracy of continuous rotary motor electro-hydraulic servo system.
基金supported by the Postdoctoral Project of Heilongjiang Province
文摘In order to suppress the periodic interference of the continuous rotary electro-hydraulic servo motor,this paper makes the motor tracking the periodic signals with high accuracy,and improves the influence of friction interference to the performance of continuous rotary electro-hydraulic servo motor.The mathematic model of the electro-hydraulic position servo system of the continuous rotary motor was established,and the compound control method was adopted based on the repetitive control,feed forward and PID to suppress the friction interference.Through the simulation,the result confirms that the compound control method decreases the tracking error of the system,increases the robust performance of the system and improves the performance of the continuous rotary electro-hydraulic servo motor.
基金The MKE(The Ministry of Knowledge Economy),Korea,under the Human Resources Development Program for Robotics Support Program supervised by the NIPA(National IT Industry Promotion Agency)(NIPA-2012-H1502-12-1002)The MKE,Korea,under the ITRC(Infor mation Technology Research Center)Support Program supervised by the NIPA(NI-PA-2012-H0301-12-2006)
文摘This paper proposes a method that rotation angle of servo motor and distance values of ultrasonic sensor are used for tracking an object in real-time while the robot keeps regular distance.Object detection distance widens by using ultrasonic sensors and object recognition,and movement of robot is controlled by angle of servo motor and distance of ultrasonic sensors.Not adopting the existing tracking methods:camera,laser-infrared(LRF)and many ultrasonic sensors,the proposed method proves that it is possible to track object using ultrasonic sensor and servo motor.Trajectory of robot is represented and analysed according to movement of object in limited conditions.
基金NationalNatureScienceFoundation (No .5 9775 0 62 )
文摘With the background of the control of additional mechanical force droplet transfer in MIG/MAG welding, regarding the AC servo motor as core, a novel oscillating wire feeding system has been developed with excellent performances of control and dynamic acceleration which is tested. System constitution and operation principle are introduced in this paper. Influences of parameters on dynamic acceleration performance are analyzed and discussed emphatically, such as oscillating frequency, oscillating amplitude and draw-back speed. Experimental result indicates that according to the technique of welding control, the novel wire feeding system responds rapidly to various kinds of control orders of wire feeding and draw-back, and realizes flexible control of welding wire axial movement, including dynamic shifting,oscillating and so on.
基金the National Natural Science Foundation of China(No.51975164)the China Scholarship Council(No.201908230358)the Fundamental Research Fundation for Universities of Heilongjiang Province(No.2019-KYYWF-0205)。
文摘In order to study the influence of inlet and outlet pressure difference and triangular buffer groove on the internal leakage of continuous rotary electro-hydraulic servo motor,the flow field model of motor with and without triangular groove is established respectively.The mesh model is divided.The pressure distribution of the internal flow field under different pressure difference is analyzed by Fluent.Then,the gap leakage under different pressure difference is calculated,and the leakage curve is obtained.Finally,continuous rotary electro-hydraulic servo motor experimental system is built to conduct the internal leakage test,and the leakage under different pressure difference is measured and compared with the simulation results.The results show that the occurrence of leakage in the motor can be reduced by setting the triangular buffer groove on the flow plate,the simulation and experimental results are consistent.It can be concluded that the larger the pressure difference between the inlet and the outlet of the motor,the larger the gap leakage.The research lays foundation for the application of continuous rotary electro-hydraulic servo motor.
基金National Natural Science Foundation of China (50175020)
文摘Fiber winding tension is an important factor in the molding techniques of composite material which influences the quality of winding product directly, and the tension control is a key technique in fiber winding techniques. This paper introduces a closed-loop tension control system with the programmable logic controller (PLC) with function modules as its control kernel, the alternating current (AC) servo motor as execute element and the radius-following device to accomplish the real-time radius compensation. The mechanism of the tension control system is analyzed and the numerical model is set up. The compensation technique of the radius of the scroll is analyzed. Experimental results show that the system is well qualified with high control precision and high reaction speed.
基金supported by the National Natural Science Foundation of China(Grant No.62073213).
文摘The vessel heave motion caused by wave action increases the difficulty of installing offshore wind equipment.On-board wave heave compensation devices have therefore become increasingly critical in ensuring the stability and safety of the gangway and working platform.This study accordingly improves the compensation effect of such devices by developing a wave heave compensation model and designing an optimized backstepping control method.First,a model of the compensation system including the servo motor and electric cylinder is established by using the mechanism method.Second,a backstepping control method is designed to track the vessel heave motion,and particle swarm optimization is applied to optimize the control parameters.Finally,MATLAB/Simulink is used to simulate the application of the optimized backstepping controller,then regular and irregular heave motions are applied as input to a Stewart platform to evaluate the effectiveness of the control method.The experimental results show that the compensation efficiency provided by the proposed optimized backstepping control method is larger than 75.0%.
基金Funded by the Natural Science Foundation of Hubei Province (No. 2004AA101E04)
文摘Fast response and stable torque output are crucial to the performance of electric screw presses. This paper describes the design of a direct torque control (DTC) system for speeding up torque response and reducing the starting current of electric screw presses and its application to the J58K series of numerical control electric screw presses with a dual-motor drive. The DTC drive system encompasses speed control, torque reference control, and switching frequency control. Comparison of the DTC dual-AC induction motor drive with corresponding AC servo motor drive showed that for the J58K-315 electric screw press, the DTC drive system attains a higher maximum speed (786 r/min) within a shorter time (1.13 s) during a 250 nun stroke and undergoes smaller rise in temperature (42.0 ℃) in the motor after running for 2 h at a 12 min-1 strike frequency than the AC servo motor drive does (751 r/min within 1.19 s, and 50.6 ℃ rise). Moreover, the DTC AC induction motor drive, with no need for a tachometer or position encoder to feed back the speed or position of the motor shaft, enjoys increased reliability in a strong-shock work environment.
基金supported by the National Natural Science Foundation of China(Grant No.52106112,52007153)Natural Science Basic Research Plan of Shaanxi Province in China(Program No.2022JM-185)。
文摘High-power servo motor is widely employed as a necessary actuator in flight vehicles.The urgent problem to be solved restraining the working performance of servo motor is no longer the torque and power,but the heat dissipation capability under high-power working conditions,which may cause the overheat,even burn down of motor or other potential safety hazards.Therefore,a structure of mini cooling channels with appropriate channel density is designed in accordance with the non-uniform heat flux of servo motor in this paper.Combined with the regenerative cooling method,the cryogenic fuel supercritical methane is served as the coolant,which is easy to be obtained from the propulsion system,and the heat from the servo motor can be transported to the combustion for reusing.According to the actual working cases of servo motor,a numerical model is built to predict the thermal performance of cooling channels.In order to better represent the secondary flow of coolant in the cooling channels,especially the turbulent mixed flow in the manifold,the k-εRNG model with enhanced wall treatment is employed resulting from its precise capacity to simulate the secondary and wall shear flow.On this basis,the heat transfer mechanism and thermal performance of cooling channels,as well as the influence of various heat flux ratios are investigated,which can offer an in-depth understanding of restraining excessive temperature rise and non-uniformity distribution of the servo motor.By the calculation results,it can be concluded that under the adjustment of the channel density according to the corresponding heat flux,the positive role of the appropriate channel density and the manifolds on heat transfer is manifested.Moreover,the maximum temperature difference of heating wall can be kept within an acceptable range of the servo motor.The heat transfer coefficient in the manifold is nearly 2–4 times higher compared with that in the straight cooling channels.The effect of buoyancy force cannot be neglected even in the manifold with turbulent mixed flow,and the pattern of heat transfer is mixed convection one in all the flow regions.The thermal resistance R and overall Nusselt number Nu are affected remarkably by all the operation parameters studied in the paper,except the pressure,while the overall thermal performance coefficientηdemonstrates differently.The strong impact of heat flux ratio is implied on thermal performance of the cooling channels.Higher heat flux ratio results in the stronger non-uniform temperature distribution.Meanwhile,only tiny temperature differences of the fluid and inner wall in manifolds among various heat flux ratios are demonstrated,resulting from the positive effect of mixture flow on heat transfer.
基金Project(51975164)supported by the National Natural Science Foundation of ChinaProject(201908230358)supported by the China Scholarship CouncilProject(2019-KYYWF-0205)supported by the Fundamental Research Foundation for Universities of Heilongjiang Province,China。
文摘In order to solve the problem of pressure shock on the continuous rotary electro-hydraulic servo motor,the mathematical models of pressure gradient under the structure of pre-compressed chamber and U-shaped groove were established.The optimal structure dimensions of the pre-compressed chamber and the U-shaped groove were determined.The fluid models were established by Solidworks under the four structures of triangular groove,triangular groove with pre-compression chamber,U-shaped groove and U-shaped groove with pre-compression chamber.Simulation analysis of depressurization process of fluid models was performed based on FLUENT.The pressure nephograms of different buffer structures were compared and analyzed,and the pressure change curves and pressure gradient change curves in the process of depressurization were obtained.The results show that the optimal edge length of the pre-compressed chamber of continuous rotary electro-hydraulic servo motor is 20 mm in the process of decompression.The pressure reduction effect is the best when the width of the U-shaped groove is 1.5 mm and the depth is 1.65 mm.The U-shaped groove structure with pre-compression chamber is more conducive to alleviate the pressure shock phenomenon of the motor compared with different combine buffer structures.
基金National Key Research and Development Program of China(No.2017YFF0108100)。
文摘Aiming at the deficiency of diagnosis method based on vibration signal,a novel method based on speed signal with singular value decomposition and Hilbert transform(SVD-HT)is proposed.The fault diagnosis mechanism based on the speed signal is obtained by constructing the shaft misalignment fault model firstly.Then the SVD-HT method is applied to the processing of the speed signal.The accuracy of the SVD-HT method is verified by comparing the diagnosis results of the order spectrum method and the SVD-HT method.After that,the diagnosis results based on vibration signal and speed signal under no-load and load patterns are compared.Under the no-load pattern,the amplitudes of the speed signal components f_(r),2f_(r) and 4f_(r) are linear with the misalignment.In addition,under the load pattern,the amplitudes of the speed signal components f_(r),2f_(r) and 4f_(r) have a linear relationship with the load.However,the diagnosis result of the vibration signal does not have the above characteristics.The comparison results verify the robustness and reliability of the speed signal and SVD-HT method.The method presented in this paper provides a novel way for misalignment fault diagnosis.
基金the National Natural Science Foundation of China (No. 50975055) for financial support
文摘In this paper, taking two degrees of freedom on the armature–flapper assembly into account, a seventh-order model is deduced and proposed for the dynamic response of a two-stage electro-hydraulic servo valve from nonlinear equations. These deductions are based on fundamental laws of electromagnetism, fluid, and general mechanics. The coefficients of the proposed seventhorder model are derived in terms of servo valve physical parameters and fluid properties explicitly.For validating the results of the proposed model, an AMESim simulation model based on physical laws and the existing low-order models validated by other researchers through experiments are used to compare with the seventh-order model. The results show that the seventh-order model can reflect the physical behavior of the servo valve more explicitly than the existing low-order models and it could provide guidance more easily for a linear control design approach and sensitivity analysis than the AMESim simulation model.