The function of exogenous alanine(Ala)in regulating biomass accumulation,lipid production,photosynthesis,and respiration in Chlorella pyrenoidosa was studied.Result shows that the supplementation of Ala increased C.py...The function of exogenous alanine(Ala)in regulating biomass accumulation,lipid production,photosynthesis,and respiration in Chlorella pyrenoidosa was studied.Result shows that the supplementation of Ala increased C.pyrenoidosa biomass and lipid production in an 8-d batch culture.The concentration of 10 mmol/L of Ala was optimum and increased the microalgal cell biomass and lipid content by 39.3%and 21.4%,respectively,compared with that in the control(0-mmol/L Ala).Ala supplementation reduced photosynthetic activity while boosting respiratory activity and pyruvate levels,indicating that C.pyrenoidosa used exogenous Ala for biomass accumulation through the respiratory metabolic process.The accelerated respiratory metabolism due to Ala supplementation elevated the substrate pool and improved the lipogenic gene expression,promoting lipid production at last.This study provided a novel method for increasing biomass accumulation and lipid production and elucidated the role of Ala in regulating lipid production.展开更多
Background: Noninvasive ventilation (NIV) is an important therapeutic modality for the treatment of acute respiratory failure (ARF). In this review, we critically analyze randomized controlled trials on the most used ...Background: Noninvasive ventilation (NIV) is an important therapeutic modality for the treatment of acute respiratory failure (ARF). In this review, we critically analyze randomized controlled trials on the most used NIV interfaces in the treatments of ARF. Methods: The searches were conducted in the Medline, Lilacs, PubMed, Cochrane, and Pedro databases from June to November 2021. The inclusion criteria were Randomized clinical trials (RCTs) published from 2016 to 2021 in Portuguese, Spanish, or English and involving adults (aged ≥ 18 years). The eligibility criteria for article selection were based on the PICO strategy: Population—Adults with ARF;Intervention—NIV Therapy;Comparison—Conventional oxygen therapy, high-flow nasal cannula (HFNC) oxygen therapy, or NIV;Outcome—improvement in ARF. The search for articles and the implementation of the inclusion criteria were independently conducted by two researchers. Results: Seven scientific articles involving 574 adults with ARF due to various causes, such as chest trauma, decompensated heart failure, coronavirus disease 2019 (COVID-19), and postoperative period, among others, were included. The interfaces cited in the studies included an oronasal mask, nasal mask, full-face mask, and helmet. In addition, some favorable outcomes related to NIV were reported in the studies, such as a reduction in the rate of orotracheal intubation and shorter length of stay in the ICU. Conclusions: The most cited interfaces in the treatment of ARF were the oronasal mask and the helmet.展开更多
Objective:To investigate the effect of the first prone position on arterial blood gas analysis and respiratory parameters of acute respiratory distress syndrome(ARDS)patients with and without COVID.Methods:This study ...Objective:To investigate the effect of the first prone position on arterial blood gas analysis and respiratory parameters of acute respiratory distress syndrome(ARDS)patients with and without COVID.Methods:This study was conducted retrospectively with 22 COVID-ARDS and 22 non-COVID ARDS patients,who were placed in a prone position for at least 16 hours on the first day at the intensive care unit admission,and arterial blood gas analysis was taken in the pre-prone,prone and post-prone periods.Results:PaO2 were significantly increased in the pre-prone vs.prone comparison in both groups,but the increase in the PaO2/FiO2 ratio was not significant.In comparing the pre-prone vs.post-prone PaO2/FiO2 ratios,there was a significant difference only in the non-COVID ARDS group.Conclusions:The improved oxygenation provided by prone positioning is more permanent with the“post-prone effect”in non-COVID ARDS patients.This can be attributed to the differences in the pathogenesis of the two ARDS types.展开更多
Interest in the dynamics of soil respiration(R_(S))in subalpine forest ecosystems is increasing due to their high soil carbon density and potential sensitivity to environmental changes.However,as a principal silvicult...Interest in the dynamics of soil respiration(R_(S))in subalpine forest ecosystems is increasing due to their high soil carbon density and potential sensitivity to environmental changes.However,as a principal silvicultural practice,the long-term impacts of thinning on R_(S) and its heterotrophic and autotrophic respiration components(R_(h) and Ra,respectively)in subalpine plantations are poorly understood,espe-cially in winter.A 3-year field observation was carried out with consideration of winter CO_(2) efflux in middle-aged sub-alpine spruce plantations in northwestern China.A trench-ing method was used to explore the long-term impacts of thinning on Rs,Rn and R_(a).Seventeen years after thinning,mean annual Rs,Rn and R_(a) increased,while the contribu-tion of R_(h) to R_(s) decreased with thinning intensity.Thinning significantly decreased winter R,because of the reduction in R_(n) but had no significant effect on Ra.The temperature sensitivity(Q_(10))of R_(h) and R_(a) also increased with thinning intensity,with lower Q_(10) values for R_(h)(2.1-2.6)than for Ra(2.4-2.8).The results revealed the explanatory variables and pathways related to R_(n) and R_(a) dynamics.Thinning increased soil moisture and nitrate nitrogen(NO_(3)^(-)-N),and the enhanced nitrogen and water availability promoted R_(h) and R_(a) by improving fine root biomass and microbial activity.Our results highlight the positive roles of NO_(3)^(-)-N in stimulating R_(s) components following long-term thinning.Therefore,applications of nitrogen fertilizer are not recommended while thinning subalpine spruce plantations from the perspective of reducing soil CO_(2) emissions.The increased Q_(10) values of R_(s) components indicate that a large increase in soil CO_(2) emissions would be expected following thinning because of more pronounced climate warming in alpineregions.展开更多
Control of dust in underground coal mines is critical for mitigating both safety and health hazards.For decades,the National Institute of Occupational Safety and Health(NIOSH)has led research to evaluate the effective...Control of dust in underground coal mines is critical for mitigating both safety and health hazards.For decades,the National Institute of Occupational Safety and Health(NIOSH)has led research to evaluate the effectiveness of various dust control technologies in coal mines.Recent studies have included the evaluation of auxiliary scrubbers to reduce respirable dust downstream of active mining and the use of canopy air curtains(CACs)to reduce respirable dust in key operator positions.While detailed dust characterization was not a focus of such studies,this is a growing area of interest.Using preserved filter samples from three previous NIOSH studies,the current work aims to explore the effect of two different scrubbers(one wet and one dry)and a roof bolter CAC on respirable dust composition and particle size distribution.For this,the preserved filter samples were analyzed by thermogravimetric analysis and/or scanning electron microscopy with energy dispersive X-ray.Results indicate that dust composition was not appreciably affected by either scrubber or the CAC.However,the wet scrubber and CAC appeared to decrease the overall particle size distribution.Such an effect of the dry scrubber was not consistently observed,but this is probably related to the particular sampling location downstream of the scrubber which allowed for significant mixing of the scrubber exhaust and other return air.Aside from the insights gained with respect to the three specific dust control case studies revisited here,this work demonstrates the value of preserved dust samples for follow-up investigation more broadly.展开更多
Exposure to respirable coal mine dust(RCMD)can cause chronic and debilitating lung diseases.Real-time monitoring capabilities are sought which can enable a better understanding of dust components and sources.In many u...Exposure to respirable coal mine dust(RCMD)can cause chronic and debilitating lung diseases.Real-time monitoring capabilities are sought which can enable a better understanding of dust components and sources.In many underground mines,RCMD includes three primary components which can be loosely associated with three major dust sources:coal dust from the coal seam itself,silicates from the surrounding rock strata,and carbonates from the inert‘rock dust’products that are applied to mitigate explosion hazards.A monitor which can reliably partition RCMD between these three components could thus allow source apportionment.And tracking silicates,specifically,could be valuable since the most serious health risks are typically associated with this component-particularly if abundant in crystalline silica.Envisioning a monitoring concept based on field microscopy,and following up on prior research using polarized light,the aim of the current study was to build and test a model to classify respirable-sized particles as either coal,silicates,or carbonates.For model development,composite dust samples were generated in the laboratory by successively depositing dust from high-purity materials onto a sticky transparent substrate,and imaging after each deposition event such that the identity of each particle was known a priori.Model testing followed a similar approach,except that real geologic materials were used as the source for each dust component.Results showed that the model had an overall accuracy of 86.5%,indicating that a field-microscopy based moni-tor could support RCMD source apportionment and silicates tracking in some coal mines.展开更多
Warming-induced carbon loss via ecosystem respiration(R_(e))is probably intensifying in the alpine grassland ecosystem of the Tibetan Plateau owing to more accelerated warming and the higher temperature sensitivity of...Warming-induced carbon loss via ecosystem respiration(R_(e))is probably intensifying in the alpine grassland ecosystem of the Tibetan Plateau owing to more accelerated warming and the higher temperature sensitivity of R_(e)(Q_(10)).However,little is known about the patterns and controlling factors of Q_(10)on the plateau,impeding the comprehension of the intensity of terrestrial carbon-climate feedbacks for these sensitive and vulnerable ecosystems.Here,we synthesized and analyzed multiyear observations from 14 sites to systematically compare the spatiotemporal variations of Q_(10)values in diverse climate zones and ecosystems,and further explore the relationships between Q_(10)and environmental factors.Moreover,structural equation modeling was utilized to identify the direct and indirect factors predicting Q_(10)values during the annual,growing,and non-growing seasons.The results indicated that the estimated Q_(10)values were strongly dependent on temperature,generally,with the average Q_(10)during different time periods increasing with air temperature and soil temperature at different measurement depths(5 cm,10 cm,20 cm).The Q_(10)values differentiated among ecosystems and climatic zones,with warming-induced Q_(10)declines being stronger in colder regions than elsewhere based on spatial patterns.NDVI was the most cardinal factor in predicting annual Q_(10)values,significantly and positively correlated with Q_(10).Soil temperature(Ts)was identified as the other powerful predictor for Q_(10),and the negative Q_(10)-Ts relationship demonstrates a larger terrestrial carbon loss potentiality in colder than in warmer regions in response to global warming.Note that the interpretations of the effect of soil moisture on Q_(10)were complicated,reflected in a significant positive relationship between Q_(10)and soil moisture during the growing season and a strong quadratic correlation between the two during the annual and non-growing season.These findings are conducive to improving our understanding of alpine grassland ecosystem carbon-climate feedbacks under warming climates.展开更多
High temperature stress (HT) is efficient in breaking endo-dormancy of perennial trees. The effects of HT (50°C) on the respiration of dormant nectarine (Prunus persica var. nectariana cv. Shuguang) vegetat...High temperature stress (HT) is efficient in breaking endo-dormancy of perennial trees. The effects of HT (50°C) on the respiration of dormant nectarine (Prunus persica var. nectariana cv. Shuguang) vegetative buds were evaluated in the research. We found that bud respiration was transiently inhibited by HT and the pentose phosphate pathway (PPP) and the cytochrome C pathway (CYT) were significantly affected. On the substrate level, PPP was activated in the HT-treated buds compared with the control group. However, the activation did mot occur until hours after HT treatment. The tricarboxylic acid cycle (TCA) in both the HT-treated buds and in the control group proceeded at a low level most of the time compared with total respiration. On the electron transfer level, CYT was transiently inhibited by HT but became significantly active in the later stage. CYT operation in the control group exhibited an attenuation process. The alternative pathway (ALT) fluctuated both in the HT-treated samples and in the control. The results suggest that the temporary CYT inhibition and the following PPP activation may be involved in HT-induced bud dormancy release and budburst mechanisms.展开更多
Once forests have achieved a full canopy, their growth rate declines progressively with age. This work used a global data set with estimates from a wide range of forest types, aged 20-795 years, of their annual photos...Once forests have achieved a full canopy, their growth rate declines progressively with age. This work used a global data set with estimates from a wide range of forest types, aged 20-795 years, of their annual photosynthetic production(gross primary production, GPP) and subsequent above-plus below-ground biomass production(net primary production, NPP). Both GPP and NPP increased with increasing mean annual temperature and precipitation. GPP was then unrelated to forest age whilst NPP declined progressively with increasing age. These results implied that autotrophic respiration increases with age. It has been proposed that GPP should decline in response to increasing water stress in leaves as water is raised to greater heights as trees grow taller with age. However, trees may make substantial plastic adjustment in mor phology and anatomy of newly developing leaves, xylem and fi ne roots to compensate for this stress and maintain GPP with age. This work reviews the possibilities that NPP declines with age as respiratory costsincrease progressively in, any or all of, the construction and maintenance of more complex tissues, the maintenance of increasing amounts of live tissue within the sapwood of stems and coarse roots, the conversion of sapwood to hear twood, the increasing distance of phloem transport, increased turnover rates of fine roots, cost of supporting very tall trees that are unable to compensate fully for increased water stress in their canopies or maintaining alive competitively unsuccessful small trees.展开更多
High humidity and high dust concentration in deep coal mines may severely challenge the performance of respirators worn by coal miners.This paper aims at quantitatively evaluating the respirators used in deep coal min...High humidity and high dust concentration in deep coal mines may severely challenge the performance of respirators worn by coal miners.This paper aims at quantitatively evaluating the respirators used in deep coal mines and providing scientific guidance for the respiratory protection of miners.Based on the self-designed in-situ PM2.5 collector,controllable PM2.5 generator,human breathing simulator,and respirator simulation testing system,under the simulated deep mine working condition,this study investigated the effects of dust loading,wearing time,and dust concentration on the filtration efficiency,breathing resistance,and quality factor of N95 elastomeric respirators.With the increase of dust loading,the respirator filtration efficiency firstly decreased,then increased(minimum value 97.5%).The breathing resistance increased exponentially from 120 to 180 to 1020-1530 Pa,and the quality factor decreased logarithmically from 0.051 to 0.076 to 0.0058-0.0085 Pa^(-1).As the PM2.5 coal dust concentration increased from 5 to 50 mg/m^(3),the wearing time for the respirator breathing resistance to exceed 300 Pa reduced from 7 h to less than 1 h.One N95 elastomeric respirator is not able to perform an 8-h work shift.To avoid the excessive breathing resistance caused by dust loading,more filter cartridges are needed for coal miners.展开更多
The study of respiratory plasticity in animal models spans decades.At the bench,researchers use an array of techniques aimed at harnessing the power of plasticity within the central nervous system to restore respirati...The study of respiratory plasticity in animal models spans decades.At the bench,researchers use an array of techniques aimed at harnessing the power of plasticity within the central nervous system to restore respiration following spinal cord injury.This field of research is highly clinically relevant.People living with cervical spinal cord injury at or above the level of the phrenic motoneuron pool at spinal levels C3-C5 typically have significant impairments in breathing which may require assisted ventilation.Those who are ventilator dependent are at an increased risk of ventilator-associated co-morbidities and have a drastically reduced life expectancy.Pre-clinical research examining respiratory plasticity in animal models has laid the groundwork for clinical trials.Despite how widely researched this injury is in animal models,relatively few treatments have broken through the preclinical barrier.The three goals of this present review are to define plasticity as it pertains to respiratory function post-spinal cord injury,discuss plasticity models of spinal cord injury used in research,and explore the shift from preclinical to clinical research.By investigating current targets of respiratory plasticity research,we hope to illuminate preclinical work that can influence future clinical investigations and the advancement of treatments for spinal cord injury.展开更多
Respirator breathing resistance impacts performance of wearers during constant work load. However, it is less clear as to how breathing resistance affects the tolerant capacity of users during graded work load. The pr...Respirator breathing resistance impacts performance of wearers during constant work load. However, it is less clear as to how breathing resistance affects the tolerant capacity of users during graded work load. The present study investigated the tolerant capacity of 8 individuals during incremental work load. The 8 subjects were required to wear two matched respirators (respirators Ⅰ and Ⅱ which were designed to have different breathing resistances and the same dead space) respectively on separate days and then work to end points. Minute ventilation (VE), breathing frequency (BF), oxygen consumption (VO2) and heart rate (HR) were recorded during exercise, while tolerant time, response time and breathing discomfort were measured at the end of each test trial. The test variables were com-pared between the two respirators by using matched-pairs t-test. The results showed that the tolerant time was significantly reduced for the respiratorⅠwith higher level of breathing resistance when compared with its counterpart with lower breathing resistance (respirator Ⅱ) (P〈0.05). The same changes occurred for response time. Results also showed a significant increase in VE and BF for respirator Ⅰwearers when the work load was above 125 W. The O2 consumption was similar under the two breathing resistance conditions. These findings suggested that the respiratory resistance caused by self-contained breathing apparatus (SCBA) has an impact on the tolerant capacity of users.展开更多
Respiratory monitoring is increasingly used in clinical and healthcare practices to diagnose chronic cardio-pulmonary functional diseases during various routine activities.Wearable medical devices have realized the po...Respiratory monitoring is increasingly used in clinical and healthcare practices to diagnose chronic cardio-pulmonary functional diseases during various routine activities.Wearable medical devices have realized the possibilities of ubiquitous respiratory monitoring,however,relatively little attention is paid to accuracy and reliability.In previous study,a wearable respiration biofeedback system was designed.In this work,three kinds of signals were mixed to extract respiratory rate,i.e.,respiration inductive plethysmography(RIP),3D-acceleration and ECG.In-situ experiments with twelve subjects indicate that the method significantly improves the accuracy and reliability over a dynamic range of respiration rate.It is possible to derive respiration rate from three signals within mean absolute percentage error 4.37%of a reference gold standard.Similarly studies derive respiratory rate from single-lead ECG within mean absolute percentage error 17%of a reference gold standard.展开更多
The CO_2 released from respiring cells in woody tissues of trees can contribute to one of three fluxes:efflux to the atmosphere(E_A),internal xylem sap transport flux(F_T),and storage flux(DS).Adding those fluxes toge...The CO_2 released from respiring cells in woody tissues of trees can contribute to one of three fluxes:efflux to the atmosphere(E_A),internal xylem sap transport flux(F_T),and storage flux(DS).Adding those fluxes together provides an estimate of actual stem respiration(R_S).We know that the relative proportion of CO_2 in those fluxes varies greatly among tree species,but we do not yet have a clear understanding of the causes for this variation.One possible explanation is that species differ in stem radial CO_2 conductance(g_c).A high g_c would favor the E_A pathway and a low g_cwould favor the F_Tpathway.However,g_chas only been measured once in situ and only in a single tree species.We measured g_cusing two methods in stems of Fraxinus mandshurica Rupr.(ash)and Betula platyphylla Suk.(birch)trees in situ,along with R_S,E_A,F_T and DS.Stem radial CO_2 conductance was substantially greater in ash trees than in birch trees.Corresponding to that finding,in ash trees over 24 h,E_Aconstituted the entire flux of respired CO_2 ,and F_Twas negative,indicating that additional CO_2 ,probably transported from the root system via the xylem,was also diffusing into the atmosphere.In ash trees,F_T was negative over the entire 24 h,and this study represents the first time that has been reported.The addition of xylem-transported CO_2 to E_A caused E_Ato be 9% higher than the actual R_Sover the diel measurement period.Birch trees,which had lower g_c,also had a more commonly seen pattern,with E_A accounting for about 80% of the CO_2 released from local cell respiration and F_T accounting for the remainder.The inorganic carbon concentration in xylem sap was also lower in ash trees than in birch trees:2.7 versus 5.3 mmol L^(-1),respectively.Our results indicate that stem CO_2 conductance could be a very useful measurement to help explain differences among species in the proportion of respired CO_2 that remains in the xylem or diffuses into the atmosphere.展开更多
This paper presents the evaluation results of protective performance of the respirators (full face supplied-fresh air respirators and half-mask active charcoal filter) and personal exposure measurement (Infacepiece sa...This paper presents the evaluation results of protective performance of the respirators (full face supplied-fresh air respirators and half-mask active charcoal filter) and personal exposure measurement (Infacepiece sampling) in a Belgian viscose rayon factory. With in-facepiece sampling technique and personal sampling method, we measured the CS2 concentrations inside and outside of the different respirators. We found two kinds of the respirators have significant effect on decreasing the CS2 exposure level for the subject, especially for the spinners. Full face supplied-fresh air respirator have good protective effect for the spinners and have limit protection for the high exposure job although the PF value is more than 10. It still need to improve more. In-facepiece sampling for all the subjects exposed to CS2 in the factory found most subjects have exposed to low CS2 concentration, most exposure levels were under the control range, but sulfuror are high exposure, the exposure level is higher than ACGIH TLV value.展开更多
Objective To evaluate the acute toxicity of 2-deoxy-D-glucose (2DG) by oral (p.o.) and intravenous (i.v.) routes, and also the cardio-respiratory effects following high doses of 2DG in animal models. Methods The...Objective To evaluate the acute toxicity of 2-deoxy-D-glucose (2DG) by oral (p.o.) and intravenous (i.v.) routes, and also the cardio-respiratory effects following high doses of 2DG in animal models. Methods The LD50 of 2DG (in water) was determined in rats and mice by p.o. route and in mice by i.v. route. The effect of 2-DG (250 mg/kg, 500 mg/kg, and 1000 mg/kg, i.v.) was studied on various cardio-respiratory parameters viz., mean arterial blood pressure, heart rate and respiratory rate in anaesthetised rats. The effect of 2DG (500 mg/kg, 1000 mg/kg, and 2000 mg/kg, p.o.) was also studied on various respiratory parameters viz., respiratory rate and tidal volume in conscious rats and mice using a computer program. Results The p.o. LD50 of 2DG was found to be 〉8000 mg/kg in mice and rats, and at this dose no death was observed. The LD50 in mice by i.v. route was found to be 8000 mg/kg. At this dose 2 out of 4 mice died and the death occurred within 6 h. A significant increase in the body weight was observed after p.o. administration of 2DG in rats at 500 mg/kg, 1000 mg/kg, and 2000 mg/kg doses. There was no significant change in the body weight at 4000 mg/kg and 8000 mg/kg by the p.o. route in rats and up to 8000 mg/kg by p.o. as well as i.v. routes in mice. Intravenous administration of 2DG (250 mg/kg, 500 mg/kg, and 1000 mg/kg) in anaesthetised rats showed a time-dependent decrease in the mean arterial blood pressure. There was no change in the heart rate in any of the treatment groups. The tidal volume was not changed significantly by p.o administration in conscious rats, but a significant decrease in the respiratory frequency at 500 mg/kg and 1000 mg/kg doses was observed. In the mice also there was no change in the tidal volume after p.o, administration, but the respiratory frequency decreased significantly at 2000 mg/kg dose. Conclusion 2DG is a safe compound but can cause a fall in the blood pressure and a decrease in respiratory frequency at high doses.展开更多
There is a lack of reported studies on how the long duration wearing of N95 respirators or surgical facemasks will affect the upper airway functions. Considering the frequency of mask wearing especially in hospitals a...There is a lack of reported studies on how the long duration wearing of N95 respirators or surgical facemasks will affect the upper airway functions. Considering the frequency of mask wearing especially in hospitals and during an outbreak of influenza, it is essential to have such data documented. Therefore, the current study is to establish the effect of long duration wearing of N95 and surgical facemasks on upper airway functions. 47 staffs of National University Hospital Singapore in 2013 were recruited. Each of the volunteers wore both N95 respirator and surgical facemask for 3 hours on two different days. During the period of mask wearing, relative airflow rates were recorded. Smell function test was carried out before and after mask wearing. The results show that no significant change of smell test score was found after removal of both the two types of masks. With N95 respirator, more air was breathed into the upper airways compared to surgical facemask.展开更多
Blooms of the scyphozoan jellyfish <i><span style="font-family:Verdana;">Aurelia aurita</span></i><span style="font-family:Verdana;"> are greatly regulated by the surv...Blooms of the scyphozoan jellyfish <i><span style="font-family:Verdana;">Aurelia aurita</span></i><span style="font-family:Verdana;"> are greatly regulated by the survival rate of planktonic ephyrae. The ecophysiology of ephyrae is poorly studied compared with polyps and medusae. As extremely strong starvation resistance and recovery capability of </span><i><span style="font-family:Verdana;">A. aurita</span></i><span style="font-family:Verdana;"> ephyrae may due to its low metabolic rate as well as starvation may reduce the swimming ability of ephyrae which may lead to the higher predation loss, the effects of temperature and starvation on their respiration and pulsation rates were examined. In this study, ephyrae under different starvation conditions were measured by a fluorescence-based DO meter after 72 h incubation. And the pulsation rates were measured at every 10-d interval in 1-liter plastic bottle by a hand-held counter. The results showed that the mean respiration rates of newly released ephyrae were 0.24, 0.24 and 0.19 μl O</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> ephyra</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;"> d</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;"> at 15°C, 12°C and 9°C, respectively, and the rates tended to decrease with increasing starvation duration. Carbon weight-specific respiration rates did not change significantly with starvation duration. The dry weight-specific respiration rates of newly released </span><i><span style="font-family:Verdana;">A. aurita</span></i><span style="font-family:Verdana;"> ephyrae (</span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;">, 11.7</span><span style="font-size:10pt;font-family:Verdana;">-</span><span style="font-size:10pt;font-family:;" "=""><span style="font-family:Verdana;">14.6 μl O</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> mg DW</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;"> d</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;">) were nearly one order of magnitude lower than the rates for planktonic larvae of other taxa (e.g., molluscs, crustaceans and fish). The maximum pulsation rate taken by </span><i><span style="font-family:Verdana;">A. aurita</span></i><span style="font-family:Verdana;"> ephyrae was 49.2 beats min</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;">, which represents the maximum swimming velocity to be 8.87 cm·min</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;">. The pulsation rates were not affected by temperature over the range between 9°C and 15°C. However, they were influenced by starvation duration. Starvation-derived decrease in pulsation together with associated body shrinkage may lead to lower encounter rate of prey and lower escaping ability from predators, which may lead to higher predation loss in the field.</span></span>展开更多
Non-compliance with respiratory protection programs among firefighters may put them at increased risk of injury and illness from occupational exposures during fire extinguishing activities. This research aims to chara...Non-compliance with respiratory protection programs among firefighters may put them at increased risk of injury and illness from occupational exposures during fire extinguishing activities. This research aims to characterize respiratory protection practices among Florida firefighters. This information will allow better understanding of factors that are associated with non-compliance with respiratory protection guidelines. A survey questionnaire was used to characterize Florida fire departments in this cross-sectional study. Four hundred and seventy-seven surveys were administered to Florida firefighters both in person and electronically to collect information regarding firefighter knowledge and participation in their respective respiratory protection programs during the past twelve months. Survey questions were developed from the model set by the National Fire Protection Association (NFPA) which provides standards and regulations regarding firefighter protections. Summary statistics regarding firefighter department size, coverage area, and firefighter employment type were produced. Multinomial logistic regression analysis was performed to evaluate factors that impact respiratory protection programs. The 477 respondents were 91% male with a mean age of 39 years old (range 21 - 65 years). The majority of respondents, 76%, were non-smokers, 21% former smokers, and 3% current smokers. In regard to ethnicity, respondents were 77% Caucasian, 13% Hispanic, 3% African American, and 4% other. Most respondents were career firefighters, 97%, with less than ten years of experience, 44%, working in a fire department with at least 21 firefighters, 98%. Most respondents, 80%, had a written respiratory program in place. The most cited reason for not having implemented a written respiratory protection program was lack of knowledge related to the program. Multinomial logistic regression analysis of departments with response areas of at least 250,000 square miles produced a statistically significant 0.444 (0.219 - 0.901 CI) odds ratio for having a written respiratory program as compared to those with a less than 10,000 square miles response area. Additional resources need to be given to Florida fire departments to ensure that all firefighters receive adequate respiratory protection in accordance with NFPA guidelines. There is an association between fire departments with large response areas and non-compliance with respiratory protection guidelines in regard to: having a written respiratory program, the frequency of respiratory fit testing, and the frequency of medical fitness testing. This suggests that rural fire departments need additional resources to ensure firefighters are adequately protected. Additional research should focus on why these differences exist in the rural fire departments. Respondents stating a lack of knowledge or no requirement for a written respiratory program suggest that future efforts should focus on respiratory protection education and training.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.32002411,42276189)the Innovation and Entrepreneurship Project for College Students of Hohai University(No.2022102941027)the Jiangsu Innovation Center for Marine Bioresources(No.822153216)。
文摘The function of exogenous alanine(Ala)in regulating biomass accumulation,lipid production,photosynthesis,and respiration in Chlorella pyrenoidosa was studied.Result shows that the supplementation of Ala increased C.pyrenoidosa biomass and lipid production in an 8-d batch culture.The concentration of 10 mmol/L of Ala was optimum and increased the microalgal cell biomass and lipid content by 39.3%and 21.4%,respectively,compared with that in the control(0-mmol/L Ala).Ala supplementation reduced photosynthetic activity while boosting respiratory activity and pyruvate levels,indicating that C.pyrenoidosa used exogenous Ala for biomass accumulation through the respiratory metabolic process.The accelerated respiratory metabolism due to Ala supplementation elevated the substrate pool and improved the lipogenic gene expression,promoting lipid production at last.This study provided a novel method for increasing biomass accumulation and lipid production and elucidated the role of Ala in regulating lipid production.
文摘Background: Noninvasive ventilation (NIV) is an important therapeutic modality for the treatment of acute respiratory failure (ARF). In this review, we critically analyze randomized controlled trials on the most used NIV interfaces in the treatments of ARF. Methods: The searches were conducted in the Medline, Lilacs, PubMed, Cochrane, and Pedro databases from June to November 2021. The inclusion criteria were Randomized clinical trials (RCTs) published from 2016 to 2021 in Portuguese, Spanish, or English and involving adults (aged ≥ 18 years). The eligibility criteria for article selection were based on the PICO strategy: Population—Adults with ARF;Intervention—NIV Therapy;Comparison—Conventional oxygen therapy, high-flow nasal cannula (HFNC) oxygen therapy, or NIV;Outcome—improvement in ARF. The search for articles and the implementation of the inclusion criteria were independently conducted by two researchers. Results: Seven scientific articles involving 574 adults with ARF due to various causes, such as chest trauma, decompensated heart failure, coronavirus disease 2019 (COVID-19), and postoperative period, among others, were included. The interfaces cited in the studies included an oronasal mask, nasal mask, full-face mask, and helmet. In addition, some favorable outcomes related to NIV were reported in the studies, such as a reduction in the rate of orotracheal intubation and shorter length of stay in the ICU. Conclusions: The most cited interfaces in the treatment of ARF were the oronasal mask and the helmet.
文摘Objective:To investigate the effect of the first prone position on arterial blood gas analysis and respiratory parameters of acute respiratory distress syndrome(ARDS)patients with and without COVID.Methods:This study was conducted retrospectively with 22 COVID-ARDS and 22 non-COVID ARDS patients,who were placed in a prone position for at least 16 hours on the first day at the intensive care unit admission,and arterial blood gas analysis was taken in the pre-prone,prone and post-prone periods.Results:PaO2 were significantly increased in the pre-prone vs.prone comparison in both groups,but the increase in the PaO2/FiO2 ratio was not significant.In comparing the pre-prone vs.post-prone PaO2/FiO2 ratios,there was a significant difference only in the non-COVID ARDS group.Conclusions:The improved oxygenation provided by prone positioning is more permanent with the“post-prone effect”in non-COVID ARDS patients.This can be attributed to the differences in the pathogenesis of the two ARDS types.
基金supported by the National Natural Science Foundation of China (Grant Nos.41701296 and 42277481)the Natural Science Foundation of Gansu Province (GrantNo.22JR5RA058)the Youth Science and Technology Fund Program of Gansu Province (Grant No.22JR5RA087).
文摘Interest in the dynamics of soil respiration(R_(S))in subalpine forest ecosystems is increasing due to their high soil carbon density and potential sensitivity to environmental changes.However,as a principal silvicultural practice,the long-term impacts of thinning on R_(S) and its heterotrophic and autotrophic respiration components(R_(h) and Ra,respectively)in subalpine plantations are poorly understood,espe-cially in winter.A 3-year field observation was carried out with consideration of winter CO_(2) efflux in middle-aged sub-alpine spruce plantations in northwestern China.A trench-ing method was used to explore the long-term impacts of thinning on Rs,Rn and R_(a).Seventeen years after thinning,mean annual Rs,Rn and R_(a) increased,while the contribu-tion of R_(h) to R_(s) decreased with thinning intensity.Thinning significantly decreased winter R,because of the reduction in R_(n) but had no significant effect on Ra.The temperature sensitivity(Q_(10))of R_(h) and R_(a) also increased with thinning intensity,with lower Q_(10) values for R_(h)(2.1-2.6)than for Ra(2.4-2.8).The results revealed the explanatory variables and pathways related to R_(n) and R_(a) dynamics.Thinning increased soil moisture and nitrate nitrogen(NO_(3)^(-)-N),and the enhanced nitrogen and water availability promoted R_(h) and R_(a) by improving fine root biomass and microbial activity.Our results highlight the positive roles of NO_(3)^(-)-N in stimulating R_(s) components following long-term thinning.Therefore,applications of nitrogen fertilizer are not recommended while thinning subalpine spruce plantations from the perspective of reducing soil CO_(2) emissions.The increased Q_(10) values of R_(s) components indicate that a large increase in soil CO_(2) emissions would be expected following thinning because of more pronounced climate warming in alpineregions.
基金CDC/NIOSH for funding this research(75D30119C05529)。
文摘Control of dust in underground coal mines is critical for mitigating both safety and health hazards.For decades,the National Institute of Occupational Safety and Health(NIOSH)has led research to evaluate the effectiveness of various dust control technologies in coal mines.Recent studies have included the evaluation of auxiliary scrubbers to reduce respirable dust downstream of active mining and the use of canopy air curtains(CACs)to reduce respirable dust in key operator positions.While detailed dust characterization was not a focus of such studies,this is a growing area of interest.Using preserved filter samples from three previous NIOSH studies,the current work aims to explore the effect of two different scrubbers(one wet and one dry)and a roof bolter CAC on respirable dust composition and particle size distribution.For this,the preserved filter samples were analyzed by thermogravimetric analysis and/or scanning electron microscopy with energy dispersive X-ray.Results indicate that dust composition was not appreciably affected by either scrubber or the CAC.However,the wet scrubber and CAC appeared to decrease the overall particle size distribution.Such an effect of the dry scrubber was not consistently observed,but this is probably related to the particular sampling location downstream of the scrubber which allowed for significant mixing of the scrubber exhaust and other return air.Aside from the insights gained with respect to the three specific dust control case studies revisited here,this work demonstrates the value of preserved dust samples for follow-up investigation more broadly.
基金supported by the Alpha Foundation for the Improvement of Mine Safety and Health,grant number AFC316FO-84.
文摘Exposure to respirable coal mine dust(RCMD)can cause chronic and debilitating lung diseases.Real-time monitoring capabilities are sought which can enable a better understanding of dust components and sources.In many underground mines,RCMD includes three primary components which can be loosely associated with three major dust sources:coal dust from the coal seam itself,silicates from the surrounding rock strata,and carbonates from the inert‘rock dust’products that are applied to mitigate explosion hazards.A monitor which can reliably partition RCMD between these three components could thus allow source apportionment.And tracking silicates,specifically,could be valuable since the most serious health risks are typically associated with this component-particularly if abundant in crystalline silica.Envisioning a monitoring concept based on field microscopy,and following up on prior research using polarized light,the aim of the current study was to build and test a model to classify respirable-sized particles as either coal,silicates,or carbonates.For model development,composite dust samples were generated in the laboratory by successively depositing dust from high-purity materials onto a sticky transparent substrate,and imaging after each deposition event such that the identity of each particle was known a priori.Model testing followed a similar approach,except that real geologic materials were used as the source for each dust component.Results showed that the model had an overall accuracy of 86.5%,indicating that a field-microscopy based moni-tor could support RCMD source apportionment and silicates tracking in some coal mines.
基金supported by the National Science Foundation of China(Grant No.41930759)the Gansu Provincial Science and Technology Program(Grant No.22ZD6FA005)+4 种基金the National Science Foundation of China(Grant Nos.41875018 and 41875016)the Science and Technology Research Plan of Gansu Province(Grant Nos.20JR10RA070 and 22JR5RA048)the Chinese Academy of Sciences(CAS)“Light of West China”Program(Grant No.E2290302)the Gansu Provincial Science and Technology Program(Grant No.23JRRA609)the integrated Land Ecosystem-Atmosphere Processes Study(iLEAPS).
文摘Warming-induced carbon loss via ecosystem respiration(R_(e))is probably intensifying in the alpine grassland ecosystem of the Tibetan Plateau owing to more accelerated warming and the higher temperature sensitivity of R_(e)(Q_(10)).However,little is known about the patterns and controlling factors of Q_(10)on the plateau,impeding the comprehension of the intensity of terrestrial carbon-climate feedbacks for these sensitive and vulnerable ecosystems.Here,we synthesized and analyzed multiyear observations from 14 sites to systematically compare the spatiotemporal variations of Q_(10)values in diverse climate zones and ecosystems,and further explore the relationships between Q_(10)and environmental factors.Moreover,structural equation modeling was utilized to identify the direct and indirect factors predicting Q_(10)values during the annual,growing,and non-growing seasons.The results indicated that the estimated Q_(10)values were strongly dependent on temperature,generally,with the average Q_(10)during different time periods increasing with air temperature and soil temperature at different measurement depths(5 cm,10 cm,20 cm).The Q_(10)values differentiated among ecosystems and climatic zones,with warming-induced Q_(10)declines being stronger in colder regions than elsewhere based on spatial patterns.NDVI was the most cardinal factor in predicting annual Q_(10)values,significantly and positively correlated with Q_(10).Soil temperature(Ts)was identified as the other powerful predictor for Q_(10),and the negative Q_(10)-Ts relationship demonstrates a larger terrestrial carbon loss potentiality in colder than in warmer regions in response to global warming.Note that the interpretations of the effect of soil moisture on Q_(10)were complicated,reflected in a significant positive relationship between Q_(10)and soil moisture during the growing season and a strong quadratic correlation between the two during the annual and non-growing season.These findings are conducive to improving our understanding of alpine grassland ecosystem carbon-climate feedbacks under warming climates.
基金supported by the the Key Technologies R&D Program of China during the 12th Five-Year Plan period (2011BAD12B02)
文摘High temperature stress (HT) is efficient in breaking endo-dormancy of perennial trees. The effects of HT (50°C) on the respiration of dormant nectarine (Prunus persica var. nectariana cv. Shuguang) vegetative buds were evaluated in the research. We found that bud respiration was transiently inhibited by HT and the pentose phosphate pathway (PPP) and the cytochrome C pathway (CYT) were significantly affected. On the substrate level, PPP was activated in the HT-treated buds compared with the control group. However, the activation did mot occur until hours after HT treatment. The tricarboxylic acid cycle (TCA) in both the HT-treated buds and in the control group proceeded at a low level most of the time compared with total respiration. On the electron transfer level, CYT was transiently inhibited by HT but became significantly active in the later stage. CYT operation in the control group exhibited an attenuation process. The alternative pathway (ALT) fluctuated both in the HT-treated samples and in the control. The results suggest that the temporary CYT inhibition and the following PPP activation may be involved in HT-induced bud dormancy release and budburst mechanisms.
文摘Once forests have achieved a full canopy, their growth rate declines progressively with age. This work used a global data set with estimates from a wide range of forest types, aged 20-795 years, of their annual photosynthetic production(gross primary production, GPP) and subsequent above-plus below-ground biomass production(net primary production, NPP). Both GPP and NPP increased with increasing mean annual temperature and precipitation. GPP was then unrelated to forest age whilst NPP declined progressively with increasing age. These results implied that autotrophic respiration increases with age. It has been proposed that GPP should decline in response to increasing water stress in leaves as water is raised to greater heights as trees grow taller with age. However, trees may make substantial plastic adjustment in mor phology and anatomy of newly developing leaves, xylem and fi ne roots to compensate for this stress and maintain GPP with age. This work reviews the possibilities that NPP declines with age as respiratory costsincrease progressively in, any or all of, the construction and maintenance of more complex tissues, the maintenance of increasing amounts of live tissue within the sapwood of stems and coarse roots, the conversion of sapwood to hear twood, the increasing distance of phloem transport, increased turnover rates of fine roots, cost of supporting very tall trees that are unable to compensate fully for increased water stress in their canopies or maintaining alive competitively unsuccessful small trees.
基金supported by the National Natural Science Foundation of China(No.51904291)the Basic Research Program of Jiangsu Province(No.BK20190638)+2 种基金the Fundamental Research Funds for the Central Universities(No.2020XGYJ08)the Project funded by China Postdoctoral Science Foundation(No.2020 M681781),the Jiangsu Planned Projects for Postdoctoral Research Funds(No.2020Z076)the State Key Laboratory of Strata Intelligent Control and Green Mining Co-founded by Shandong Province and the Ministry of Science and Technology(No.SICGM202105).
文摘High humidity and high dust concentration in deep coal mines may severely challenge the performance of respirators worn by coal miners.This paper aims at quantitatively evaluating the respirators used in deep coal mines and providing scientific guidance for the respiratory protection of miners.Based on the self-designed in-situ PM2.5 collector,controllable PM2.5 generator,human breathing simulator,and respirator simulation testing system,under the simulated deep mine working condition,this study investigated the effects of dust loading,wearing time,and dust concentration on the filtration efficiency,breathing resistance,and quality factor of N95 elastomeric respirators.With the increase of dust loading,the respirator filtration efficiency firstly decreased,then increased(minimum value 97.5%).The breathing resistance increased exponentially from 120 to 180 to 1020-1530 Pa,and the quality factor decreased logarithmically from 0.051 to 0.076 to 0.0058-0.0085 Pa^(-1).As the PM2.5 coal dust concentration increased from 5 to 50 mg/m^(3),the wearing time for the respirator breathing resistance to exceed 300 Pa reduced from 7 h to less than 1 h.One N95 elastomeric respirator is not able to perform an 8-h work shift.To avoid the excessive breathing resistance caused by dust loading,more filter cartridges are needed for coal miners.
基金supported by funds awarded from the National Institutes of Health R01 NS104291Wings for Life(to MAL)the Lisa Dean Moseley Foundation(to LVZ).
文摘The study of respiratory plasticity in animal models spans decades.At the bench,researchers use an array of techniques aimed at harnessing the power of plasticity within the central nervous system to restore respiration following spinal cord injury.This field of research is highly clinically relevant.People living with cervical spinal cord injury at or above the level of the phrenic motoneuron pool at spinal levels C3-C5 typically have significant impairments in breathing which may require assisted ventilation.Those who are ventilator dependent are at an increased risk of ventilator-associated co-morbidities and have a drastically reduced life expectancy.Pre-clinical research examining respiratory plasticity in animal models has laid the groundwork for clinical trials.Despite how widely researched this injury is in animal models,relatively few treatments have broken through the preclinical barrier.The three goals of this present review are to define plasticity as it pertains to respiratory function post-spinal cord injury,discuss plasticity models of spinal cord injury used in research,and explore the shift from preclinical to clinical research.By investigating current targets of respiratory plasticity research,we hope to illuminate preclinical work that can influence future clinical investigations and the advancement of treatments for spinal cord injury.
文摘Respirator breathing resistance impacts performance of wearers during constant work load. However, it is less clear as to how breathing resistance affects the tolerant capacity of users during graded work load. The present study investigated the tolerant capacity of 8 individuals during incremental work load. The 8 subjects were required to wear two matched respirators (respirators Ⅰ and Ⅱ which were designed to have different breathing resistances and the same dead space) respectively on separate days and then work to end points. Minute ventilation (VE), breathing frequency (BF), oxygen consumption (VO2) and heart rate (HR) were recorded during exercise, while tolerant time, response time and breathing discomfort were measured at the end of each test trial. The test variables were com-pared between the two respirators by using matched-pairs t-test. The results showed that the tolerant time was significantly reduced for the respiratorⅠwith higher level of breathing resistance when compared with its counterpart with lower breathing resistance (respirator Ⅱ) (P〈0.05). The same changes occurred for response time. Results also showed a significant increase in VE and BF for respirator Ⅰwearers when the work load was above 125 W. The O2 consumption was similar under the two breathing resistance conditions. These findings suggested that the respiratory resistance caused by self-contained breathing apparatus (SCBA) has an impact on the tolerant capacity of users.
基金Project(2012M510207)supported by the China Postdoctoral Science FoundationProjects(60932001,61072031)supported by the National Natural Science Foundation of China+2 种基金Project(2012AA02A604)supported by the National High Technology Research and Development Program of ChinaProject(2013ZX03005013)supported by the Next Generation Communication Technology Major Project of National Science and Technology,ChinaProject supported by the"One-hundred Talent"and the"Low-cost Healthcare"Programs of Chinese Academy of Sciences
文摘Respiratory monitoring is increasingly used in clinical and healthcare practices to diagnose chronic cardio-pulmonary functional diseases during various routine activities.Wearable medical devices have realized the possibilities of ubiquitous respiratory monitoring,however,relatively little attention is paid to accuracy and reliability.In previous study,a wearable respiration biofeedback system was designed.In this work,three kinds of signals were mixed to extract respiratory rate,i.e.,respiration inductive plethysmography(RIP),3D-acceleration and ECG.In-situ experiments with twelve subjects indicate that the method significantly improves the accuracy and reliability over a dynamic range of respiration rate.It is possible to derive respiration rate from three signals within mean absolute percentage error 4.37%of a reference gold standard.Similarly studies derive respiratory rate from single-lead ECG within mean absolute percentage error 17%of a reference gold standard.
基金supported by the National Natural Science Foundation of China(31670476 and 31100284)the Fundamental Research Funds for the Central Universities(2572016CA02)
文摘The CO_2 released from respiring cells in woody tissues of trees can contribute to one of three fluxes:efflux to the atmosphere(E_A),internal xylem sap transport flux(F_T),and storage flux(DS).Adding those fluxes together provides an estimate of actual stem respiration(R_S).We know that the relative proportion of CO_2 in those fluxes varies greatly among tree species,but we do not yet have a clear understanding of the causes for this variation.One possible explanation is that species differ in stem radial CO_2 conductance(g_c).A high g_c would favor the E_A pathway and a low g_cwould favor the F_Tpathway.However,g_chas only been measured once in situ and only in a single tree species.We measured g_cusing two methods in stems of Fraxinus mandshurica Rupr.(ash)and Betula platyphylla Suk.(birch)trees in situ,along with R_S,E_A,F_T and DS.Stem radial CO_2 conductance was substantially greater in ash trees than in birch trees.Corresponding to that finding,in ash trees over 24 h,E_Aconstituted the entire flux of respired CO_2 ,and F_Twas negative,indicating that additional CO_2 ,probably transported from the root system via the xylem,was also diffusing into the atmosphere.In ash trees,F_T was negative over the entire 24 h,and this study represents the first time that has been reported.The addition of xylem-transported CO_2 to E_A caused E_Ato be 9% higher than the actual R_Sover the diel measurement period.Birch trees,which had lower g_c,also had a more commonly seen pattern,with E_A accounting for about 80% of the CO_2 released from local cell respiration and F_T accounting for the remainder.The inorganic carbon concentration in xylem sap was also lower in ash trees than in birch trees:2.7 versus 5.3 mmol L^(-1),respectively.Our results indicate that stem CO_2 conductance could be a very useful measurement to help explain differences among species in the proportion of respired CO_2 that remains in the xylem or diffuses into the atmosphere.
文摘This paper presents the evaluation results of protective performance of the respirators (full face supplied-fresh air respirators and half-mask active charcoal filter) and personal exposure measurement (Infacepiece sampling) in a Belgian viscose rayon factory. With in-facepiece sampling technique and personal sampling method, we measured the CS2 concentrations inside and outside of the different respirators. We found two kinds of the respirators have significant effect on decreasing the CS2 exposure level for the subject, especially for the spinners. Full face supplied-fresh air respirator have good protective effect for the spinners and have limit protection for the high exposure job although the PF value is more than 10. It still need to improve more. In-facepiece sampling for all the subjects exposed to CS2 in the factory found most subjects have exposed to low CS2 concentration, most exposure levels were under the control range, but sulfuror are high exposure, the exposure level is higher than ACGIH TLV value.
文摘Objective To evaluate the acute toxicity of 2-deoxy-D-glucose (2DG) by oral (p.o.) and intravenous (i.v.) routes, and also the cardio-respiratory effects following high doses of 2DG in animal models. Methods The LD50 of 2DG (in water) was determined in rats and mice by p.o. route and in mice by i.v. route. The effect of 2-DG (250 mg/kg, 500 mg/kg, and 1000 mg/kg, i.v.) was studied on various cardio-respiratory parameters viz., mean arterial blood pressure, heart rate and respiratory rate in anaesthetised rats. The effect of 2DG (500 mg/kg, 1000 mg/kg, and 2000 mg/kg, p.o.) was also studied on various respiratory parameters viz., respiratory rate and tidal volume in conscious rats and mice using a computer program. Results The p.o. LD50 of 2DG was found to be 〉8000 mg/kg in mice and rats, and at this dose no death was observed. The LD50 in mice by i.v. route was found to be 8000 mg/kg. At this dose 2 out of 4 mice died and the death occurred within 6 h. A significant increase in the body weight was observed after p.o. administration of 2DG in rats at 500 mg/kg, 1000 mg/kg, and 2000 mg/kg doses. There was no significant change in the body weight at 4000 mg/kg and 8000 mg/kg by the p.o. route in rats and up to 8000 mg/kg by p.o. as well as i.v. routes in mice. Intravenous administration of 2DG (250 mg/kg, 500 mg/kg, and 1000 mg/kg) in anaesthetised rats showed a time-dependent decrease in the mean arterial blood pressure. There was no change in the heart rate in any of the treatment groups. The tidal volume was not changed significantly by p.o administration in conscious rats, but a significant decrease in the respiratory frequency at 500 mg/kg and 1000 mg/kg doses was observed. In the mice also there was no change in the tidal volume after p.o, administration, but the respiratory frequency decreased significantly at 2000 mg/kg dose. Conclusion 2DG is a safe compound but can cause a fall in the blood pressure and a decrease in respiratory frequency at high doses.
文摘There is a lack of reported studies on how the long duration wearing of N95 respirators or surgical facemasks will affect the upper airway functions. Considering the frequency of mask wearing especially in hospitals and during an outbreak of influenza, it is essential to have such data documented. Therefore, the current study is to establish the effect of long duration wearing of N95 and surgical facemasks on upper airway functions. 47 staffs of National University Hospital Singapore in 2013 were recruited. Each of the volunteers wore both N95 respirator and surgical facemask for 3 hours on two different days. During the period of mask wearing, relative airflow rates were recorded. Smell function test was carried out before and after mask wearing. The results show that no significant change of smell test score was found after removal of both the two types of masks. With N95 respirator, more air was breathed into the upper airways compared to surgical facemask.
文摘Blooms of the scyphozoan jellyfish <i><span style="font-family:Verdana;">Aurelia aurita</span></i><span style="font-family:Verdana;"> are greatly regulated by the survival rate of planktonic ephyrae. The ecophysiology of ephyrae is poorly studied compared with polyps and medusae. As extremely strong starvation resistance and recovery capability of </span><i><span style="font-family:Verdana;">A. aurita</span></i><span style="font-family:Verdana;"> ephyrae may due to its low metabolic rate as well as starvation may reduce the swimming ability of ephyrae which may lead to the higher predation loss, the effects of temperature and starvation on their respiration and pulsation rates were examined. In this study, ephyrae under different starvation conditions were measured by a fluorescence-based DO meter after 72 h incubation. And the pulsation rates were measured at every 10-d interval in 1-liter plastic bottle by a hand-held counter. The results showed that the mean respiration rates of newly released ephyrae were 0.24, 0.24 and 0.19 μl O</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> ephyra</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;"> d</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;"> at 15°C, 12°C and 9°C, respectively, and the rates tended to decrease with increasing starvation duration. Carbon weight-specific respiration rates did not change significantly with starvation duration. The dry weight-specific respiration rates of newly released </span><i><span style="font-family:Verdana;">A. aurita</span></i><span style="font-family:Verdana;"> ephyrae (</span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;">, 11.7</span><span style="font-size:10pt;font-family:Verdana;">-</span><span style="font-size:10pt;font-family:;" "=""><span style="font-family:Verdana;">14.6 μl O</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> mg DW</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;"> d</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;">) were nearly one order of magnitude lower than the rates for planktonic larvae of other taxa (e.g., molluscs, crustaceans and fish). The maximum pulsation rate taken by </span><i><span style="font-family:Verdana;">A. aurita</span></i><span style="font-family:Verdana;"> ephyrae was 49.2 beats min</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;">, which represents the maximum swimming velocity to be 8.87 cm·min</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;">. The pulsation rates were not affected by temperature over the range between 9°C and 15°C. However, they were influenced by starvation duration. Starvation-derived decrease in pulsation together with associated body shrinkage may lead to lower encounter rate of prey and lower escaping ability from predators, which may lead to higher predation loss in the field.</span></span>
文摘Non-compliance with respiratory protection programs among firefighters may put them at increased risk of injury and illness from occupational exposures during fire extinguishing activities. This research aims to characterize respiratory protection practices among Florida firefighters. This information will allow better understanding of factors that are associated with non-compliance with respiratory protection guidelines. A survey questionnaire was used to characterize Florida fire departments in this cross-sectional study. Four hundred and seventy-seven surveys were administered to Florida firefighters both in person and electronically to collect information regarding firefighter knowledge and participation in their respective respiratory protection programs during the past twelve months. Survey questions were developed from the model set by the National Fire Protection Association (NFPA) which provides standards and regulations regarding firefighter protections. Summary statistics regarding firefighter department size, coverage area, and firefighter employment type were produced. Multinomial logistic regression analysis was performed to evaluate factors that impact respiratory protection programs. The 477 respondents were 91% male with a mean age of 39 years old (range 21 - 65 years). The majority of respondents, 76%, were non-smokers, 21% former smokers, and 3% current smokers. In regard to ethnicity, respondents were 77% Caucasian, 13% Hispanic, 3% African American, and 4% other. Most respondents were career firefighters, 97%, with less than ten years of experience, 44%, working in a fire department with at least 21 firefighters, 98%. Most respondents, 80%, had a written respiratory program in place. The most cited reason for not having implemented a written respiratory protection program was lack of knowledge related to the program. Multinomial logistic regression analysis of departments with response areas of at least 250,000 square miles produced a statistically significant 0.444 (0.219 - 0.901 CI) odds ratio for having a written respiratory program as compared to those with a less than 10,000 square miles response area. Additional resources need to be given to Florida fire departments to ensure that all firefighters receive adequate respiratory protection in accordance with NFPA guidelines. There is an association between fire departments with large response areas and non-compliance with respiratory protection guidelines in regard to: having a written respiratory program, the frequency of respiratory fit testing, and the frequency of medical fitness testing. This suggests that rural fire departments need additional resources to ensure firefighters are adequately protected. Additional research should focus on why these differences exist in the rural fire departments. Respondents stating a lack of knowledge or no requirement for a written respiratory program suggest that future efforts should focus on respiratory protection education and training.