The integration of set-valued ordered rough set models and incremental learning signify a progressive advancement of conventional rough set theory, with the objective of tackling the heterogeneity and ongoing transfor...The integration of set-valued ordered rough set models and incremental learning signify a progressive advancement of conventional rough set theory, with the objective of tackling the heterogeneity and ongoing transformations in information systems. In set-valued ordered decision systems, when changes occur in the attribute value domain, such as adding conditional values, it may result in changes in the preference relation between objects, indirectly leading to changes in approximations. In this paper, we effectively addressed the issue of updating approximations that arose from adding conditional values in set-valued ordered decision systems. Firstly, we classified the research objects into two categories: objects with changes in conditional values and objects without changes, and then conducted theoretical studies on updating approximations for these two categories, presenting approximation update theories for adding conditional values. Subsequently, we presented incremental algorithms corresponding to approximation update theories. We demonstrated the feasibility of the proposed incremental update method with numerical examples and showed that our incremental algorithm outperformed the static algorithm. Ultimately, by comparing experimental results on different datasets, it is evident that the incremental algorithm efficiently reduced processing time. In conclusion, this study offered a promising strategy to address the challenges of set-valued ordered decision systems in dynamic environments.展开更多
A kind of tangent derivative and the concepts of strong and weak * pseudoconvexity for a set-valued map are introduced. By the standard separation theorems of the convex sets and cones the optimality Fritz John condit...A kind of tangent derivative and the concepts of strong and weak * pseudoconvexity for a set-valued map are introduced. By the standard separation theorems of the convex sets and cones the optimality Fritz John condition of set-valued optimization under Benson proper efficiency is established, its sufficience is discussed. The form of the optimality conditions obtained here completely tally with the classical results when the set-valued map is specialized to be a single-valued map.展开更多
Several equivalent statements of generalized subconvexlike set-valued map are established in ordered linear spaces. Using vector closure, we introduce Benson proper efficient solution of vector optimization problem. U...Several equivalent statements of generalized subconvexlike set-valued map are established in ordered linear spaces. Using vector closure, we introduce Benson proper efficient solution of vector optimization problem. Under the assumption of generalized subconvexlikeness, scalarization, multiplier and saddle point theorems are obtained in the sense of Benson proper efficiency.展开更多
In this paper,the ε-super effcient solution for set-valued map vector optimization in locally convex space is introduced.And under the assumption of the nearly generalized cone-subconvexlikeness for set-valued maps,u...In this paper,the ε-super effcient solution for set-valued map vector optimization in locally convex space is introduced.And under the assumption of the nearly generalized cone-subconvexlikeness for set-valued maps,used new methods,the scalarization theorem and Lagrange multiplier theorem for ε-super effcient solution are established.展开更多
In this paper, the existence theorem of the cone weak subdifferential of set valued mapping in locally convex topological vector space is proved. Received March 30,1998. 1991 MR Subject Classification: 4...In this paper, the existence theorem of the cone weak subdifferential of set valued mapping in locally convex topological vector space is proved. Received March 30,1998. 1991 MR Subject Classification: 47H17,90C29.展开更多
A new concept of generalized set-valued strongly accretive mappings in Banach spaces was given and some strong convergence theorems of Ishikawa and Mann iterative process with errors approximation methods by Huang et ...A new concept of generalized set-valued strongly accretive mappings in Banach spaces was given and some strong convergence theorems of Ishikawa and Mann iterative process with errors approximation methods by Huang et al. was proved. The results presented in this paper improve and extend the earlier results obtained by Huang et al.展开更多
A new conception of generalized set-valued Ф-hemi-contractive mapping in Banach spaces is presented. Some strong convergence theorems of Ishikawa and Mann iterative approximation with errors is proved. The results in...A new conception of generalized set-valued Ф-hemi-contractive mapping in Banach spaces is presented. Some strong convergence theorems of Ishikawa and Mann iterative approximation with errors is proved. The results in this paper improve and extend the earlier results.展开更多
This paper deals with higher-order optimality conditions for Henig effcient solutions of set-valued optimization problems.By virtue of the higher-order tangent sets, necessary and suffcient conditions are obtained for...This paper deals with higher-order optimality conditions for Henig effcient solutions of set-valued optimization problems.By virtue of the higher-order tangent sets, necessary and suffcient conditions are obtained for Henig effcient solutions of set-valued optimization problems whose constraint condition is determined by a fixed set.展开更多
The intuitionistic fuzzy set(IFS) based on fuzzy theory,which is of high efficiency to solve the fuzzy problem, has been introduced by Atanassov. Subsequently, he pushed the research one step further from the IFS to t...The intuitionistic fuzzy set(IFS) based on fuzzy theory,which is of high efficiency to solve the fuzzy problem, has been introduced by Atanassov. Subsequently, he pushed the research one step further from the IFS to the interval valued intuitionistic fuzzy set(IVIFS). On the basis of fuzzy set(FS), the IFS is a generalization concept. And the IFS is generalized to the IVIFS.In this paper, the definition of the sixth Cartesian product over IVIFSs is first introduced and its some properties are explored.We prove some equalities based on the operation and the relation over IVIFSs. Finally, we present one geometric interpretation and a numerical example of the sixth Cartesian product over IVIFSs.展开更多
The Lebesgue-Nikodym Theorem states that for a Lebesgue measure an additive set function ?which is -absolutely continuous is the integral of a Lebegsue integrable a measurable function;that is, for all measurable sets...The Lebesgue-Nikodym Theorem states that for a Lebesgue measure an additive set function ?which is -absolutely continuous is the integral of a Lebegsue integrable a measurable function;that is, for all measurable sets.?Such a property is not shared by vector valued set functions. We introduce a suitable definition of the integral that will extend the above property to the vector valued case in its full generality. We also discuss a further extension of the Fundamental Theorem of Calculus for additive set functions with values in an infinite dimensional normed space.展开更多
The concepts of alpha-order Clarke's derivative, alpha-order Adjacent derivative and alpha-order G.Bouligand derivative of set-valued mappings are introduced, their properties are studied, with which the Fritz Joh...The concepts of alpha-order Clarke's derivative, alpha-order Adjacent derivative and alpha-order G.Bouligand derivative of set-valued mappings are introduced, their properties are studied, with which the Fritz John optimality condition of set-valued vector optimization is established. Finally, under the assumption of pseudoconvexity, the optimality condition is proved to be sufficient.展开更多
By using cone-directed contingent derivatives, the unified necessary and sufficient optimality conditions are given for weakly and strongly minimal elements respectively in generalized preinvex set-valued optimization.
The aim of this paper is to discuss the approximate rea- soning problems with interval-valued fuzzy environments based on the fully implicational idea. First, this paper constructs a class of interval-valued fuzzy imp...The aim of this paper is to discuss the approximate rea- soning problems with interval-valued fuzzy environments based on the fully implicational idea. First, this paper constructs a class of interval-valued fuzzy implications by means of a type of impli- cations and a parameter on the unit interval, then uses them to establish fully implicational reasoning methods for interval-valued fuzzy modus ponens (IFMP) and interval-valued fuzzy modus tel- lens (IFMT) problems. At the same time the reversibility properties of these methods are analyzed and the reversible conditions are given. It is shown that the existing unified forms of α-triple I (the abbreviation of triple implications) methods for FMP and FMT can be seen as the particular cases of our methods for IFMP and IFMT.展开更多
An auxiliary principle technique to study a class of generalized set-valued strongly nonlinear mixed variational-like inequalities is extended. The existence and uniqueness of the solution of the auxiliary problem for...An auxiliary principle technique to study a class of generalized set-valued strongly nonlinear mixed variational-like inequalities is extended. The existence and uniqueness of the solution of the auxiliary problem for the generalized set-valued strongly nonlinear mixed variational-like inequalities are proved, a novel and innovative three-step iterative algorithm to compute approximate solution is constructed, and the existence of the solution of the generalized set-valued strongly nonlinear mixed variational-like inequality is shown using the auxiliary principle iterative sequences generated by the algorithm technique. The convergence of three-step is also proved.展开更多
The set-valued optimization problem with constraints is considered in the sense of super efficiency in locally convex linear topological spaces. Under the assumption of iccone-convexlikeness, by applying the seperatio...The set-valued optimization problem with constraints is considered in the sense of super efficiency in locally convex linear topological spaces. Under the assumption of iccone-convexlikeness, by applying the seperation theorem, Kuhn-Tucker's, Lagrange's and saddle points optimality conditions, the necessary conditions are obtained for the set-valued optimization problem to attain its super efficient solutions. Also, the sufficient conditions for Kuhn-Tucker's, Lagrange's and saddle points optimality conditions are derived.展开更多
In this paper, we first discuss the relationship between the McShane integral and Pettis integral for vector-valued functions. Then by using the embedding theorems for the fuzzy number space E^1, we give a new equival...In this paper, we first discuss the relationship between the McShane integral and Pettis integral for vector-valued functions. Then by using the embedding theorems for the fuzzy number space E^1, we give a new equivalent condition for (K) integrabihty of a fuzzy set-valued mapping F : [a, b] → E^1.展开更多
The optimality Kuhn-Tucker condition and the wolfe duality for the preinvex set-valued optimization are investigated. Firstly, the concepts of alpha-order G-invex set and the alpha-order S-preinvex set-valued function...The optimality Kuhn-Tucker condition and the wolfe duality for the preinvex set-valued optimization are investigated. Firstly, the concepts of alpha-order G-invex set and the alpha-order S-preinvex set-valued function were introduced, from which the properties of the corresponding contingent cone and the alpha-order contingent derivative were studied. Finally, the optimality Kuhn-Tucker condition and the Wolfe duality theorem for the alpha-order S-preinvex set-valued optimization were presented with the help of the alpha-order contingent derivative.展开更多
The dynamics of set value mapping is considered. For the upper semi-continuous set value maps, the existence of attractors under some conditions and the upper semi-continuity of attractors under the perturbation are p...The dynamics of set value mapping is considered. For the upper semi-continuous set value maps, the existence of attractors under some conditions and the upper semi-continuity of attractors under the perturbation are proved. Its application in numerical simulation of differential equation is also considered. The upper semi-continuity of attractors in set value maps under the perturbation is used to show the reasonable of subdivision algorithm and interval arithmetic in numerical simulation of differential equation.展开更多
文摘The integration of set-valued ordered rough set models and incremental learning signify a progressive advancement of conventional rough set theory, with the objective of tackling the heterogeneity and ongoing transformations in information systems. In set-valued ordered decision systems, when changes occur in the attribute value domain, such as adding conditional values, it may result in changes in the preference relation between objects, indirectly leading to changes in approximations. In this paper, we effectively addressed the issue of updating approximations that arose from adding conditional values in set-valued ordered decision systems. Firstly, we classified the research objects into two categories: objects with changes in conditional values and objects without changes, and then conducted theoretical studies on updating approximations for these two categories, presenting approximation update theories for adding conditional values. Subsequently, we presented incremental algorithms corresponding to approximation update theories. We demonstrated the feasibility of the proposed incremental update method with numerical examples and showed that our incremental algorithm outperformed the static algorithm. Ultimately, by comparing experimental results on different datasets, it is evident that the incremental algorithm efficiently reduced processing time. In conclusion, this study offered a promising strategy to address the challenges of set-valued ordered decision systems in dynamic environments.
文摘A kind of tangent derivative and the concepts of strong and weak * pseudoconvexity for a set-valued map are introduced. By the standard separation theorems of the convex sets and cones the optimality Fritz John condition of set-valued optimization under Benson proper efficiency is established, its sufficience is discussed. The form of the optimality conditions obtained here completely tally with the classical results when the set-valued map is specialized to be a single-valued map.
文摘Several equivalent statements of generalized subconvexlike set-valued map are established in ordered linear spaces. Using vector closure, we introduce Benson proper efficient solution of vector optimization problem. Under the assumption of generalized subconvexlikeness, scalarization, multiplier and saddle point theorems are obtained in the sense of Benson proper efficiency.
基金Supported by the Natural Science Foundation of the Education Department of Henan Province(2004110008)
文摘In this paper,the ε-super effcient solution for set-valued map vector optimization in locally convex space is introduced.And under the assumption of the nearly generalized cone-subconvexlikeness for set-valued maps,used new methods,the scalarization theorem and Lagrange multiplier theorem for ε-super effcient solution are established.
文摘In this paper, the existence theorem of the cone weak subdifferential of set valued mapping in locally convex topological vector space is proved. Received March 30,1998. 1991 MR Subject Classification: 47H17,90C29.
基金The foundation project of Chengdu University of Information Technology (No.CRF200502)
文摘A new concept of generalized set-valued strongly accretive mappings in Banach spaces was given and some strong convergence theorems of Ishikawa and Mann iterative process with errors approximation methods by Huang et al. was proved. The results presented in this paper improve and extend the earlier results obtained by Huang et al.
文摘A new conception of generalized set-valued Ф-hemi-contractive mapping in Banach spaces is presented. Some strong convergence theorems of Ishikawa and Mann iterative approximation with errors is proved. The results in this paper improve and extend the earlier results.
基金Supported by the National Natural Science Foundation of China(10871216) Supported by the Science and Technology Research Project of Chongqing Municipal Education Commission(KJ100419) Supported by the Natural Science Foundation Project of CQ CSTC(cstcjjA00019)
文摘This paper deals with higher-order optimality conditions for Henig effcient solutions of set-valued optimization problems.By virtue of the higher-order tangent sets, necessary and suffcient conditions are obtained for Henig effcient solutions of set-valued optimization problems whose constraint condition is determined by a fixed set.
文摘背景:腰椎小关节炎是引起下腰痛的一个主要原因,目前主要依靠MRI进行初步定性诊断,但仍有一定漏诊、误诊的概率发生,因此MR T2^(*)mapping成像技术有望成为定量检查腰椎小关节炎软骨损伤的重要检测手段。目的:探讨MR T2^(*)mapping成像技术在定量分析腰椎小关节炎软骨损伤退变中的应用价值。方法:收集南京医科大学第四附属医院2020年4月至2022年3月门诊或住院合并下腰痛共110例患者,设为病例组;同时招募无症状志愿者80例,设为对照组。对所有纳入对象L1-S1的小关节行3.0 T MR扫描,获取T2^(*)mapping横断位图像和T2WI图像,分别对所有小关节软骨进行Weishaupt分级及T2^(*)值测量,收集数据并行统计学分析。不同小关节Weishaupt分级之间小关节软骨T2^(*)值比较采用单因素方差分析。结果与结论:①经统计分析发现,病例组腰椎小关节软骨T2^(*)值(17.6±1.5)ms明显较对照组(21.4±1.3)ms降低,差异有显著性意义(P<0.05);②在病例组中,随着腰椎小关节Weishaupt分级增加,小关节软骨T2^(*)值也呈逐渐下降趋势,且这种差异有显著性意义(P<0.05);③提示T2^(*)mapping能够较好地显示腰椎小关节软骨损伤的早期病理变化,腰椎小关节软骨的T2^(*)值能够定量评估腰椎小关节的软骨损伤程度;T2^(*)mapping成像技术能为影像学诊断腰椎小关节炎软骨早期损伤提供很好的理论依据,具有重要的临床应用价值。
基金supported by the National Natural Science Foundation of China(61373174)
文摘The intuitionistic fuzzy set(IFS) based on fuzzy theory,which is of high efficiency to solve the fuzzy problem, has been introduced by Atanassov. Subsequently, he pushed the research one step further from the IFS to the interval valued intuitionistic fuzzy set(IVIFS). On the basis of fuzzy set(FS), the IFS is a generalization concept. And the IFS is generalized to the IVIFS.In this paper, the definition of the sixth Cartesian product over IVIFSs is first introduced and its some properties are explored.We prove some equalities based on the operation and the relation over IVIFSs. Finally, we present one geometric interpretation and a numerical example of the sixth Cartesian product over IVIFSs.
文摘The Lebesgue-Nikodym Theorem states that for a Lebesgue measure an additive set function ?which is -absolutely continuous is the integral of a Lebegsue integrable a measurable function;that is, for all measurable sets.?Such a property is not shared by vector valued set functions. We introduce a suitable definition of the integral that will extend the above property to the vector valued case in its full generality. We also discuss a further extension of the Fundamental Theorem of Calculus for additive set functions with values in an infinite dimensional normed space.
基金the National Natural Science Foundation(69972036) and the Natural Science Foundation of Shanxi province(995L02)
文摘The concepts of alpha-order Clarke's derivative, alpha-order Adjacent derivative and alpha-order G.Bouligand derivative of set-valued mappings are introduced, their properties are studied, with which the Fritz John optimality condition of set-valued vector optimization is established. Finally, under the assumption of pseudoconvexity, the optimality condition is proved to be sufficient.
基金Supported by the National Natural Science Foundation of China (10571035)
文摘By using cone-directed contingent derivatives, the unified necessary and sufficient optimality conditions are given for weakly and strongly minimal elements respectively in generalized preinvex set-valued optimization.
基金supported by the National Natural Science Foundation of China(60774100)the Natural Science Foundation of Shandong Province of China(Y2007A15)
文摘The aim of this paper is to discuss the approximate rea- soning problems with interval-valued fuzzy environments based on the fully implicational idea. First, this paper constructs a class of interval-valued fuzzy implications by means of a type of impli- cations and a parameter on the unit interval, then uses them to establish fully implicational reasoning methods for interval-valued fuzzy modus ponens (IFMP) and interval-valued fuzzy modus tel- lens (IFMT) problems. At the same time the reversibility properties of these methods are analyzed and the reversible conditions are given. It is shown that the existing unified forms of α-triple I (the abbreviation of triple implications) methods for FMP and FMT can be seen as the particular cases of our methods for IFMP and IFMT.
基金Project supported by the National Natural Science Foundation of China (No.10472061)
文摘An auxiliary principle technique to study a class of generalized set-valued strongly nonlinear mixed variational-like inequalities is extended. The existence and uniqueness of the solution of the auxiliary problem for the generalized set-valued strongly nonlinear mixed variational-like inequalities are proved, a novel and innovative three-step iterative algorithm to compute approximate solution is constructed, and the existence of the solution of the generalized set-valued strongly nonlinear mixed variational-like inequality is shown using the auxiliary principle iterative sequences generated by the algorithm technique. The convergence of three-step is also proved.
基金Supported by the National Natural Science Foundation of China (10461007)the Science and Technology Foundation of the Education Department of Jiangxi Province (GJJ09069)
文摘The set-valued optimization problem with constraints is considered in the sense of super efficiency in locally convex linear topological spaces. Under the assumption of iccone-convexlikeness, by applying the seperation theorem, Kuhn-Tucker's, Lagrange's and saddle points optimality conditions, the necessary conditions are obtained for the set-valued optimization problem to attain its super efficient solutions. Also, the sufficient conditions for Kuhn-Tucker's, Lagrange's and saddle points optimality conditions are derived.
文摘In this paper, we first discuss the relationship between the McShane integral and Pettis integral for vector-valued functions. Then by using the embedding theorems for the fuzzy number space E^1, we give a new equivalent condition for (K) integrabihty of a fuzzy set-valued mapping F : [a, b] → E^1.
基金Project supported by the National Natural Science Foundation of China (No. 10371024) the Natural Science Foundation of Zhejiang Province (No.Y604003)
文摘The optimality Kuhn-Tucker condition and the wolfe duality for the preinvex set-valued optimization are investigated. Firstly, the concepts of alpha-order G-invex set and the alpha-order S-preinvex set-valued function were introduced, from which the properties of the corresponding contingent cone and the alpha-order contingent derivative were studied. Finally, the optimality Kuhn-Tucker condition and the Wolfe duality theorem for the alpha-order S-preinvex set-valued optimization were presented with the help of the alpha-order contingent derivative.
基金Project supported by the National Natural Science Foundation of China (No.10571130)
文摘The dynamics of set value mapping is considered. For the upper semi-continuous set value maps, the existence of attractors under some conditions and the upper semi-continuity of attractors under the perturbation are proved. Its application in numerical simulation of differential equation is also considered. The upper semi-continuity of attractors in set value maps under the perturbation is used to show the reasonable of subdivision algorithm and interval arithmetic in numerical simulation of differential equation.