Research on human emotions has started to address psychological aspects of human nature and has advanced to the point of designing various models that represent them quantitatively and systematically. Based on the fin...Research on human emotions has started to address psychological aspects of human nature and has advanced to the point of designing various models that represent them quantitatively and systematically. Based on the findings, a method is suggested for emotional space formation and emotional inference that enhance the quality and maximize the reality of emotion-based personalized services. In consideration of the subjective tendencies of individuals, AHP was adopted for the quantitative evaluation of human emotions, based on which an emotional space remodeling method is suggested in reference to the emotional model of Thayer and Plutchik, which takes into account personal emotions. In addition, Sugeno fuzzy inference, fuzzy measures, and Choquet integral were adopted for emotional inference in the remodeled personalized emotional space model. Its performance was evaluated through an experiment. Fourteen cases were analyzed with 4.0 and higher evaluation value of emotions inferred, for the evaluation of emotional similarity, through the case studies of 17 kinds of emotional inference methods. Matching results per inference method in ten cases accounting for 71% are confirmed. It is also found that the remaining two cases are inferred as adjoining emotion in the same section. In this manner, the similarity of inference results is verified.展开更多
In many practical situation, some of the attribute values for an object may be interval and set-valued. This paper introduces the interval and set-valued information systems and decision systems. According to the sema...In many practical situation, some of the attribute values for an object may be interval and set-valued. This paper introduces the interval and set-valued information systems and decision systems. According to the semantic relation of attribute values, interval and set-valued information systems can be classified into two categories: disjunctive (Type 1) and conjunctive (Type 2) systems. In this paper, we mainly focus on semantic interpretation of Type 1. Then, we define a new fuzzy preference relation and construct a fuzzy rough set model for interval and set-valued information systems. Moreover, based on the new fuzzy preference relation, the concepts of the significance measure of condition attributes and the relative significance measure of condition attributes are given in interval and set-valued decision information systems by the introduction of fuzzy positive region and the dependency degree. And on this basis, a heuristic algorithm for calculating fuzzy positive region reduction in interval and set-valued decision information systems is given. Finally, we give an illustrative example to substantiate the theoretical arguments. The results will help us to gain much more insights into the meaning of fuzzy rough set theory. Furthermore, it has provided a new perspective to study the attribute reduction problem in decision systems.展开更多
A novel mercer kernel based fuzzy clustering self-adaptive algorithm is presented. The mercer kernel method is introduced to the fuzzy c-means clustering. It may map implicitly the input data into the high-dimensional...A novel mercer kernel based fuzzy clustering self-adaptive algorithm is presented. The mercer kernel method is introduced to the fuzzy c-means clustering. It may map implicitly the input data into the high-dimensional feature space through the nonlinear transformation. Among other fuzzy c-means and its variants, the number of clusters is first determined. A self-adaptive algorithm is proposed. The number of clusters, which is not given in advance, can be gotten automatically by a validity measure function. Finally, experiments are given to show better performance with the method of kernel based fuzzy c-means self-adaptive algorithm.展开更多
In rough set theory,the lower and upper approximation operators are important notions defined by a binary relation.In this paper,we introduce a general type of relation-based fuzzy rough model determined by a triangul...In rough set theory,the lower and upper approximation operators are important notions defined by a binary relation.In this paper,we introduce a general type of relation-based fuzzy rough model determined by a triangular norm.Properties of fuzzy rough approximation operators are examined.The fuzzy rough approximation operators are also characterized by axioms.A comparative study of the fuzzy rough set algebra with other mathematical structures such as fuzzy topological spaces,fuzzy measurable spaces,and fuzzy belief structures is investigated.展开更多
基金Project(2012R1A1A2042625) supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education
文摘Research on human emotions has started to address psychological aspects of human nature and has advanced to the point of designing various models that represent them quantitatively and systematically. Based on the findings, a method is suggested for emotional space formation and emotional inference that enhance the quality and maximize the reality of emotion-based personalized services. In consideration of the subjective tendencies of individuals, AHP was adopted for the quantitative evaluation of human emotions, based on which an emotional space remodeling method is suggested in reference to the emotional model of Thayer and Plutchik, which takes into account personal emotions. In addition, Sugeno fuzzy inference, fuzzy measures, and Choquet integral were adopted for emotional inference in the remodeled personalized emotional space model. Its performance was evaluated through an experiment. Fourteen cases were analyzed with 4.0 and higher evaluation value of emotions inferred, for the evaluation of emotional similarity, through the case studies of 17 kinds of emotional inference methods. Matching results per inference method in ten cases accounting for 71% are confirmed. It is also found that the remaining two cases are inferred as adjoining emotion in the same section. In this manner, the similarity of inference results is verified.
文摘In many practical situation, some of the attribute values for an object may be interval and set-valued. This paper introduces the interval and set-valued information systems and decision systems. According to the semantic relation of attribute values, interval and set-valued information systems can be classified into two categories: disjunctive (Type 1) and conjunctive (Type 2) systems. In this paper, we mainly focus on semantic interpretation of Type 1. Then, we define a new fuzzy preference relation and construct a fuzzy rough set model for interval and set-valued information systems. Moreover, based on the new fuzzy preference relation, the concepts of the significance measure of condition attributes and the relative significance measure of condition attributes are given in interval and set-valued decision information systems by the introduction of fuzzy positive region and the dependency degree. And on this basis, a heuristic algorithm for calculating fuzzy positive region reduction in interval and set-valued decision information systems is given. Finally, we give an illustrative example to substantiate the theoretical arguments. The results will help us to gain much more insights into the meaning of fuzzy rough set theory. Furthermore, it has provided a new perspective to study the attribute reduction problem in decision systems.
文摘A novel mercer kernel based fuzzy clustering self-adaptive algorithm is presented. The mercer kernel method is introduced to the fuzzy c-means clustering. It may map implicitly the input data into the high-dimensional feature space through the nonlinear transformation. Among other fuzzy c-means and its variants, the number of clusters is first determined. A self-adaptive algorithm is proposed. The number of clusters, which is not given in advance, can be gotten automatically by a validity measure function. Finally, experiments are given to show better performance with the method of kernel based fuzzy c-means self-adaptive algorithm.
基金supported by grants from the National Natural Science Foundation of China(Nos.60673096 and 60773174)the Natural Science Foundation of Zhejiang Province in China(No.Y107262).
文摘In rough set theory,the lower and upper approximation operators are important notions defined by a binary relation.In this paper,we introduce a general type of relation-based fuzzy rough model determined by a triangular norm.Properties of fuzzy rough approximation operators are examined.The fuzzy rough approximation operators are also characterized by axioms.A comparative study of the fuzzy rough set algebra with other mathematical structures such as fuzzy topological spaces,fuzzy measurable spaces,and fuzzy belief structures is investigated.