Foxtail millet(Setaria italica(L.)P.Beauv)is a naturally stress tolerant crop.Compared to other gramineous crops,it has relatively stronger drought and lower nutrition stress tolerance traits.To date,the scope of ...Foxtail millet(Setaria italica(L.)P.Beauv)is a naturally stress tolerant crop.Compared to other gramineous crops,it has relatively stronger drought and lower nutrition stress tolerance traits.To date,the scope of functional genomics research in foxtail millet(S.italic L.)has been quite limited.NAC(NAM,ATAF1/2 and CUC2)-like transcription factors are known to be involved in various biological processes,including abiotic stress responses.In our previous foxtail millet(S.italic L.)RNA seq analysis,we found that the expression of a NAC-like transcription factor,SiNAC110,could be induced by drought stress;additionally,other references have reported that SiNAC110 expression could be induced by abiotic stress.So,we here selected SiNAC110 for further characterization and functional analysis.First,the predicted SiNAC110 protein encoded indicated SiNAC110 has a conserved NAM(no apical meristem)domain between the 11–139 amino acid positions.Phylogenetic analysis then indicated that SiNAC110 belongs to subfamily III of the NAC gene family.Subcellular localization analysis revealed that the SiNAC110-GFP fusion protein was localized to the nucleus in Arabidopsis protoplasts.Gene expression profiling analysis indicated that expression of SiNAC110 was induced by dehydration,high salinity and other abiotic stresses.Gene functional analysis using SiNAC110 overexpressed Arabidopsis plants indicated that,under drought and high salt stress conditions,the seed germination rate,root length,root surface area,fresh weight,and dry weight of the SiNAC110 overexpressed lines were significantly higher than the wild type(WT),suggesting that the SiNAC110 overexpressed lines had enhanced tolerance to drought and high salt stresses.However,overexpression of SiN AC110 did not affect the sensitivity of SiNAC110 overexpressed lines to abscisic acid(ABA)treatment.Expression analysis of genes involved in proline synthesis,Na+/K+transport,drought responses,and aqueous transport proteins were higher in the SiNAC110overexpressed lines than in the WT,whereas expression of ABA-dependent pathway genes did not change.These results indicated that overexpression of SiNAC110 conferred tolerance to drought and high salt stresses,likely through influencing the regulation of proline biosynthesis,ion homeostasis and osmotic balance.Therefore,SiNAC110 appears to function in the ABA-independent abiotic stress response pathway in plants.展开更多
Cell wall composition in monocotyledonous grasses has been identified as a key area of research for developing better feedstocks for forage and biofuel production.Setaria viridis and its close domesticated relative Se...Cell wall composition in monocotyledonous grasses has been identified as a key area of research for developing better feedstocks for forage and biofuel production.Setaria viridis and its close domesticated relative Setaria italica have been chosen as suitable monocotyledonous models for plants possessing the C4 pathway of photosynthesis including sorghum,maize,sugarcane,switchgrass and Miscanthus×giganteus.Accurate partial least squares regression(PLSR)models to predict S.italica stem composition have been generated,based upon Fourier transform mid-infrared(FTIR)spectra and calibrated with wet chemistry determinations of ground S.italica stem material measured using a modified version of the US National Renewable Energy Laboratory(NREL)acid hydrolysis protocol.The models facilitated a high-throughput screening analysis for glucan,xylan,Klason lignin and acid soluble lignin(ASL)in a collection of 183 natural S.italica variants and clustered them into classes,some possessing unique chemotypes.The predictive models provide a highly efficient screening tool for large scale breeding programs aimed at identifying lines or mutants possessing unique cell wall chemotypes.Genes encoding key catalytic enzymes of the lignin biosynthesis pathway exhibit a high level of conservation with matching expression profiles,measured by RT-q PCR,among accessions of S.italica,which closely mirror profiles observed in the different developmental regions of an elongating internode of S.viridis by RNASeq.展开更多
Breeding of male-sterile lines has become the mainstream for the heterosis utilization in foxtail millet,but the genetic basis of most male-sterile lines used for the hybrid is still an area to be elucidated.In this s...Breeding of male-sterile lines has become the mainstream for the heterosis utilization in foxtail millet,but the genetic basis of most male-sterile lines used for the hybrid is still an area to be elucidated.In this study,a highly male-sterile line Gao146A was investigated.Genetic analysis indicated that the highly male-sterile phenotype was controlled by a single recessive gene a single recessive gene.Using F 2 population derived from cross Gao146A/K103,one gene controlling the highly male- sterility,tentatively named as ms1,which linked to SSR marker b234 with genetic distance of 16.7 cM,was mapped on the chromosome VI.These results not only laid the foundation for fine mapping of this highly male-sterile gene,but also helped to accelerate the improvement of highly male-sterile lines by using molecular marker assisted breeding method.展开更多
In this study, the plant biomass production, biomass translocation rates across tissues and the lodging resistant-associated traits of millet ( Setaria italica L.) in North China were investigated. Among the four su...In this study, the plant biomass production, biomass translocation rates across tissues and the lodging resistant-associated traits of millet ( Setaria italica L.) in North China were investigated. Among the four summer millet cultivars, Baogu 19 exhibited improved plant biomass (PB) production at flowering and maturity stages, biomass translocation amount (BTA) from vegetative tissues to seeds during filling period, and lodging resistant-associated (LRA) traits compared with other cultivars, including enhanced stem lignin contents, increased anti-broken resistance (ABR), anti-puncturing resistance (APR), and stem diameter (SD) of plants. Compared with treatment regular cultivation (RC), high fertility treatment (HF) increased the plant BP, BTA from vegetative tissue to seed at filling stage, and the plant LRA traits; whereas high density treatment (HD) decreased the plant BP at plant level, plant BTA from vegetative tissues to seeds at filling stage, and the plant LRA traits. Correlation analysis revealed that stem ABR is significantly correlated with the plant lodging resistant-associated traits including APR and SD in the summer millet cultivars examined under various cultivation treatments. Our investigation indicates that cultivar Baogu 19 together with suitable fertilization and density can promote the plant biomass production, enhance vegetative tissue biomass translocation to seeds, and improve the lodging resistance of summer millet plants in North China.展开更多
Male sterility is a common biological phenomenon in plant kingdom and has been used to generate male-sterile lines, which are important genetic resources for commercial hybrid seed production. Although increasing numb...Male sterility is a common biological phenomenon in plant kingdom and has been used to generate male-sterile lines, which are important genetic resources for commercial hybrid seed production. Although increasing numbers of male-sterility genes have been identified in rice(Oryza sativa) and Arabidopsis(Arabidopsis thaliana), few male-sterility-related genes have been characterized in foxtail millet(Setaria italica). In this study, we isolated a male-sterile ethyl methanesulfonate-generated mutant in foxtail millet, no pollen 1(sinp1), which displayed abnormal Ubisch bodies, defective pollen exine and complete male sterility. Using bulk segregation analysis, we cloned SiNP1 and confirmed its function with CRISPR/Cas9 genome editing. SiNP1 encoded a putative glucose-methanol-choline oxidoreductase.Subcellular localization showed that the SiNP1 protein was preferentially localized to the endoplasmic reticulum and was predominantly expressed in panicle. Transcriptome analysis revealed that many genes were differentially expressed in the sinp1 mutant, some of which encoded proteins putatively involved in carbohydrate metabolism, fatty acid biosynthesis, and lipid transport and metabolism, which were closely associated with pollen wall development. Metabolome analysis revealed the disturbance of flavonoids metabolism and fatty acid biosynthesis in the mutant. In conclusion, identification of SiNP1 provides a candidate male-sterility gene for heterosis utilization in foxtail millet and gives further insight into the mechanism of pollen reproduction in plants.展开更多
Salinity,a major abiotic stress,reduces plant growth and severely limits agricultural productivity.Plants regulate salt uptake via calcineurin B-like proteins(CBLs).Although extensive studies of the functions of CBLs ...Salinity,a major abiotic stress,reduces plant growth and severely limits agricultural productivity.Plants regulate salt uptake via calcineurin B-like proteins(CBLs).Although extensive studies of the functions of CBLs in response to salt stress have been conducted in Arabidopsis,their functions in Setaria italica are still poorly understood.The foxtail millet genome encodes seven CBLs,of which only SiCBL4 was shown to be involved in salt response.Overexpression of SiCBL5 in Arabidopsis thaliana sos3-1 mutant rescued its salt hypersensitivity phenotype,but that of other SiCBLs(SiCBL1,SiCBL2,SiCBL3,SiCBL6,and SiCBL7)did not rescue the salt hypersensitivity of the Atsos3-1 mutant.SiCBL5 harbors an N-myristoylation motif and is located in the plasma membrane.Overexpression of SiCBL5 in foxtail millet increased its salt tolerance,but its knockdown increased salt hypersensitivity.Yeast two-hybrid and firefly luciferase complementation imaging assays showed that SiCBL5 physically interacted with SiCIPK24 in vitro and in vivo.Cooverexpression of SiCBL5,SiCIPK24,and SiSOS1 in yeast conferred a high-salt-tolerance phenotype.Compared to wild-type plants under salt stress conditions,SiCBL5 overexpressors showed lower accumulations of Na^(+) and stronger Na^(+) efflux,whereas RNAi-SiCBL5 plants showed higher accumulations of Na^(+) and weaker Na^(+) efflux.These results indicate that SiCBL5 confers salt tolerance in foxtail millet by modulating Na^(+) homeostasis.展开更多
Arid and semi-arid regions of China account for more than half of the country. Because of drought resistance and high nutritive value, elite foxtail millet (Setaria Italica (L.) P. Beauv.) is one of the most important...Arid and semi-arid regions of China account for more than half of the country. Because of drought resistance and high nutritive value, elite foxtail millet (Setaria Italica (L.) P. Beauv.) is one of the most important cereal crops in China. Evaluation of germplasm and genetic diversity of foxtail millet is still in its infancy, but prolamin could play an important role as a protein marker. To investigate the genetic diversity and population structure of foxtail millet from different ecological zones of China, 90 accessions of foxtail millet were collected from three major ecological areas: North, Northwest, and Northeast China. The prolamin contents were examined by acid polyacrylamide gel electrophoresis (acid-PAGE). Five to twenty-two prolamin bands appeared in tested varieties, of which were polymorphic, so prolamin patterns of foxtail millet varieties can be used in variety identification and evaluation. Structure analysis identified six groups, which matches their pedigree information but not their geographic origins. This indicated a high degree (87.78%) of consistency with a phylogenetic classification based on SSR. The results showed prolamin banding patterns were an effective method for analyzing foxtail millet genetic variability.展开更多
Chlorophyll (Chl) content,especially Chl b content,and stomatal conductance (G_s) are the key factors affecting the net photosynthetic rate (P_n).Setaria italica,a diploid C_4 panicoid species with a simple genome and...Chlorophyll (Chl) content,especially Chl b content,and stomatal conductance (G_s) are the key factors affecting the net photosynthetic rate (P_n).Setaria italica,a diploid C_4 panicoid species with a simple genome and high transformation efficiency,has been widely accepted as a model in photosynthesis and drought-tolerance research.The current study characterized Chl content,G_s,and P_n of 48 Setaria mutants induced by ethyl methanesulfonate.A total of 24,34,and 35 mutants had significant variations in Chl content,G_s,and P_n,respectively.Correlation analysis showed a positive correlation between increased G_s and increased P_n,and a weak correlation between decreased Chl b content and decreased P_n was also found.Remarkably,two mutants behaved with significantly decreased Chl b content but increased P_n compared to Yugu 1.Seven mutants behaved with significantly decreased G_s but did not decrease P_(n )compared to Yugu 1.The current study thus identified various genetic lines,further exploration of which would be beneficial to elucidate the relationship between Chl content,G_s,and P_n and the mechanism underlying why C_4 species are efficient at photosynthesis and water saving.展开更多
为探讨谷子(Setaria italica L.)耐旱抗逆机制,解析类受体蛋白激酶(receptor like protein kinase,RLKs)基因功能,进而为培育谷子抗逆新品种提供依据,本文以干旱处理的谷子"豫谷1号"为材料,通过i TRAQ技术筛选到1个干旱响应...为探讨谷子(Setaria italica L.)耐旱抗逆机制,解析类受体蛋白激酶(receptor like protein kinase,RLKs)基因功能,进而为培育谷子抗逆新品种提供依据,本文以干旱处理的谷子"豫谷1号"为材料,通过i TRAQ技术筛选到1个干旱响应的类受体蛋白激酶基因,命名为SiRLK35。以谷子RNA反转录的单链cDNA为模板,经PCR扩增获取SiRLK35基因全长序列。应用qRT-PCR方法,对SiRLK35在NaCl、PEG、ABA、GA、Me JA等不同处理下的表达模式进行分析。进一步构建基因原核表达载体pET28a-SiRLK35,结合斑点法对SiRLK35的抗盐能力进行初步评价。同时构建过表达载体p CAMBIA1301P-SiRLK35转化水稻,并对转基因植株抗盐能力进行检测。结果显示:胁迫及激素处理均可不同程度诱导SiRLK35基因的表达;斑点法研究结果显示,在相同NaCl浓度的LB平板上,含有SiRLK35基因的原核表达载体的大肠杆菌菌株生长状态较阴性对照好,SiRLK35具有一定的抗盐能力;获得的转SiRLK35基因水稻植株对盐胁迫的耐受性高于对照。SiRLK35基因对不同胁迫均可以产生响应,但对盐胁迫的响应较为明显,推测该基因可能在谷子的抗盐及抗逆过程中发挥作用。展开更多
Using foxtail millet (Setaria italica (L.) Beauv.) male-sterile line 1066A as female parent and Yugu 1 primary trisomic series (1 - 7) and tetrasomics 8, 9 as male parents, chromosome location of gene for male-sterili...Using foxtail millet (Setaria italica (L.) Beauv.) male-sterile line 1066A as female parent and Yugu 1 primary trisomic series (1 - 7) and tetrasomics 8, 9 as male parents, chromosome location of gene for male-sterility and yellow seedling in line 1066A was studied by primary trisomic analysis. The plants of F-1 generation of trisomics 2 - 9 were obtained by crossing with a great many plants of 1066A. F-1 generation of trisomics was similar to their male parent in morphologic characters, the color of their seedling was green, and pollen was partially fertile. The segregation ratio of fertility to sterility is 3:1 in F-2 generation of trisomics 2, 3, 4, 5, 7, 8 and 9; and 14:1 only in F-2 generation of trisomic 6 (chi(0.05)(2) = 0.012). The segregation ratio of green seedling to yellow seedling is 12:1 only in F-2 generation of trisomic 7 (chi(0.05)(2) = 0.31), but in other cases, this ratio is 3:1. The results indicated that the male-sterility gene was located on chromosome 6, and the gene for yellow seedling was monogenic recessive and located on chromosome 7. The rate of trisomics transmission by pollen was tested, trisomics 8 and 9 were the highest in rates of trisomics transmission and followed by trisomics 6 and 4.展开更多
赤峰显性核不育谷子是在谷子中首次发现的核不育材料,该材料的育性受2对核显性基因互作控制,一对是显性核不育基因Msch,另一对是显性上位育性恢复基因Rf。两者共同存在时显性上位育性恢复基因Rf能抑制显性核不育基因Msch的表达,从而表...赤峰显性核不育谷子是在谷子中首次发现的核不育材料,该材料的育性受2对核显性基因互作控制,一对是显性核不育基因Msch,另一对是显性上位育性恢复基因Rf。两者共同存在时显性上位育性恢复基因Rf能抑制显性核不育基因Msch的表达,从而表现可育。利用已构建的不育基因Msch的上位育性恢复基因Rf的近等基因系(NILs)为材料,通过对300对AFLP引物组合进行筛选,找到了与显性上位育性恢复基因Rf紧密连锁的2个AFLP标记(E15/M52和E20/M41),与不育基因的遗传距离分别是7.0c M和12.7 c M,而且位于不育基因的同一侧,标记间相距5.7 c M。展开更多
[Objective] The research aimed to study antifeedant activity of Phytolacca acinosa Roxb., Setaria viridis (L.) Beauv and Viola yedoensis Makino extracts against Pieris rapae. [Method] Activity material was extracted...[Objective] The research aimed to study antifeedant activity of Phytolacca acinosa Roxb., Setaria viridis (L.) Beauv and Viola yedoensis Makino extracts against Pieris rapae. [Method] Activity material was extracted from S. viridis (L.), P. acinosa and V. yedoensis using acetone cold soak method, and non-selective antifeedant activity of extracts to Pieris rapae larva was determined by using lobular plate addition method. [Result] The results showed that the acetone leaching agent of P. acinosa had most obvious antifeedant effects on Pieris rapae. The antifeedant rate were 74.53% and 82.34% at 24 and 48 h respectively. With the concentration increasing, the antifeedant effect of P. acinosa extracts increased. The antifeedant rate of 0.050 g/ml treatment was the highest, being 74.53% and 82.34% at 24 and 48 h. [Conclusion] P. acinosa could be studied and utilized as potential botanical insecticide.展开更多
基金funded by the National Key Project for Research on Transgenic Biology, China (2016ZX08002-002)the Innovation Project of Chinese Academy of Agricultural Sciences
文摘Foxtail millet(Setaria italica(L.)P.Beauv)is a naturally stress tolerant crop.Compared to other gramineous crops,it has relatively stronger drought and lower nutrition stress tolerance traits.To date,the scope of functional genomics research in foxtail millet(S.italic L.)has been quite limited.NAC(NAM,ATAF1/2 and CUC2)-like transcription factors are known to be involved in various biological processes,including abiotic stress responses.In our previous foxtail millet(S.italic L.)RNA seq analysis,we found that the expression of a NAC-like transcription factor,SiNAC110,could be induced by drought stress;additionally,other references have reported that SiNAC110 expression could be induced by abiotic stress.So,we here selected SiNAC110 for further characterization and functional analysis.First,the predicted SiNAC110 protein encoded indicated SiNAC110 has a conserved NAM(no apical meristem)domain between the 11–139 amino acid positions.Phylogenetic analysis then indicated that SiNAC110 belongs to subfamily III of the NAC gene family.Subcellular localization analysis revealed that the SiNAC110-GFP fusion protein was localized to the nucleus in Arabidopsis protoplasts.Gene expression profiling analysis indicated that expression of SiNAC110 was induced by dehydration,high salinity and other abiotic stresses.Gene functional analysis using SiNAC110 overexpressed Arabidopsis plants indicated that,under drought and high salt stress conditions,the seed germination rate,root length,root surface area,fresh weight,and dry weight of the SiNAC110 overexpressed lines were significantly higher than the wild type(WT),suggesting that the SiNAC110 overexpressed lines had enhanced tolerance to drought and high salt stresses.However,overexpression of SiN AC110 did not affect the sensitivity of SiNAC110 overexpressed lines to abscisic acid(ABA)treatment.Expression analysis of genes involved in proline synthesis,Na+/K+transport,drought responses,and aqueous transport proteins were higher in the SiNAC110overexpressed lines than in the WT,whereas expression of ABA-dependent pathway genes did not change.These results indicated that overexpression of SiNAC110 conferred tolerance to drought and high salt stresses,likely through influencing the regulation of proline biosynthesis,ion homeostasis and osmotic balance.Therefore,SiNAC110 appears to function in the ABA-independent abiotic stress response pathway in plants.
文摘Cell wall composition in monocotyledonous grasses has been identified as a key area of research for developing better feedstocks for forage and biofuel production.Setaria viridis and its close domesticated relative Setaria italica have been chosen as suitable monocotyledonous models for plants possessing the C4 pathway of photosynthesis including sorghum,maize,sugarcane,switchgrass and Miscanthus×giganteus.Accurate partial least squares regression(PLSR)models to predict S.italica stem composition have been generated,based upon Fourier transform mid-infrared(FTIR)spectra and calibrated with wet chemistry determinations of ground S.italica stem material measured using a modified version of the US National Renewable Energy Laboratory(NREL)acid hydrolysis protocol.The models facilitated a high-throughput screening analysis for glucan,xylan,Klason lignin and acid soluble lignin(ASL)in a collection of 183 natural S.italica variants and clustered them into classes,some possessing unique chemotypes.The predictive models provide a highly efficient screening tool for large scale breeding programs aimed at identifying lines or mutants possessing unique cell wall chemotypes.Genes encoding key catalytic enzymes of the lignin biosynthesis pathway exhibit a high level of conservation with matching expression profiles,measured by RT-q PCR,among accessions of S.italica,which closely mirror profiles observed in the different developmental regions of an elongating internode of S.viridis by RNASeq.
基金supported by the Postdoctoral Management Committee,China(92948)the Natural Science Foundation of Shanxi Province,China(2012011032-1)the Chinese Agricultural Research System(CARS-07)
文摘Breeding of male-sterile lines has become the mainstream for the heterosis utilization in foxtail millet,but the genetic basis of most male-sterile lines used for the hybrid is still an area to be elucidated.In this study,a highly male-sterile line Gao146A was investigated.Genetic analysis indicated that the highly male-sterile phenotype was controlled by a single recessive gene a single recessive gene.Using F 2 population derived from cross Gao146A/K103,one gene controlling the highly male- sterility,tentatively named as ms1,which linked to SSR marker b234 with genetic distance of 16.7 cM,was mapped on the chromosome VI.These results not only laid the foundation for fine mapping of this highly male-sterile gene,but also helped to accelerate the improvement of highly male-sterile lines by using molecular marker assisted breeding method.
基金Supported by Special Fund of Agricultural Science and Technology Achievement Transformation in Hebei Province(17826335D)Baoding Comprehensive Experimental Station of National Millet and Sorghum Industry Technology System(CARS-06-13.5-B2)
文摘In this study, the plant biomass production, biomass translocation rates across tissues and the lodging resistant-associated traits of millet ( Setaria italica L.) in North China were investigated. Among the four summer millet cultivars, Baogu 19 exhibited improved plant biomass (PB) production at flowering and maturity stages, biomass translocation amount (BTA) from vegetative tissues to seeds during filling period, and lodging resistant-associated (LRA) traits compared with other cultivars, including enhanced stem lignin contents, increased anti-broken resistance (ABR), anti-puncturing resistance (APR), and stem diameter (SD) of plants. Compared with treatment regular cultivation (RC), high fertility treatment (HF) increased the plant BP, BTA from vegetative tissue to seed at filling stage, and the plant LRA traits; whereas high density treatment (HD) decreased the plant BP at plant level, plant BTA from vegetative tissues to seeds at filling stage, and the plant LRA traits. Correlation analysis revealed that stem ABR is significantly correlated with the plant lodging resistant-associated traits including APR and SD in the summer millet cultivars examined under various cultivation treatments. Our investigation indicates that cultivar Baogu 19 together with suitable fertilization and density can promote the plant biomass production, enhance vegetative tissue biomass translocation to seeds, and improve the lodging resistance of summer millet plants in North China.
基金supported by the National Natural Science Foundation of China(31771807)the China Agriculture Research System(CARS06-13.5-A04)+1 种基金the National Key Research and Development Program of China(2018YFD1000700 and 2018YFD1000701)the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences。
文摘Male sterility is a common biological phenomenon in plant kingdom and has been used to generate male-sterile lines, which are important genetic resources for commercial hybrid seed production. Although increasing numbers of male-sterility genes have been identified in rice(Oryza sativa) and Arabidopsis(Arabidopsis thaliana), few male-sterility-related genes have been characterized in foxtail millet(Setaria italica). In this study, we isolated a male-sterile ethyl methanesulfonate-generated mutant in foxtail millet, no pollen 1(sinp1), which displayed abnormal Ubisch bodies, defective pollen exine and complete male sterility. Using bulk segregation analysis, we cloned SiNP1 and confirmed its function with CRISPR/Cas9 genome editing. SiNP1 encoded a putative glucose-methanol-choline oxidoreductase.Subcellular localization showed that the SiNP1 protein was preferentially localized to the endoplasmic reticulum and was predominantly expressed in panicle. Transcriptome analysis revealed that many genes were differentially expressed in the sinp1 mutant, some of which encoded proteins putatively involved in carbohydrate metabolism, fatty acid biosynthesis, and lipid transport and metabolism, which were closely associated with pollen wall development. Metabolome analysis revealed the disturbance of flavonoids metabolism and fatty acid biosynthesis in the mutant. In conclusion, identification of SiNP1 provides a candidate male-sterility gene for heterosis utilization in foxtail millet and gives further insight into the mechanism of pollen reproduction in plants.
基金supported by the National Natural Science Foundation of China(32001445 and 31871534)the Natural Science Foundation of Jiangsu Province(BK20200557)。
文摘Salinity,a major abiotic stress,reduces plant growth and severely limits agricultural productivity.Plants regulate salt uptake via calcineurin B-like proteins(CBLs).Although extensive studies of the functions of CBLs in response to salt stress have been conducted in Arabidopsis,their functions in Setaria italica are still poorly understood.The foxtail millet genome encodes seven CBLs,of which only SiCBL4 was shown to be involved in salt response.Overexpression of SiCBL5 in Arabidopsis thaliana sos3-1 mutant rescued its salt hypersensitivity phenotype,but that of other SiCBLs(SiCBL1,SiCBL2,SiCBL3,SiCBL6,and SiCBL7)did not rescue the salt hypersensitivity of the Atsos3-1 mutant.SiCBL5 harbors an N-myristoylation motif and is located in the plasma membrane.Overexpression of SiCBL5 in foxtail millet increased its salt tolerance,but its knockdown increased salt hypersensitivity.Yeast two-hybrid and firefly luciferase complementation imaging assays showed that SiCBL5 physically interacted with SiCIPK24 in vitro and in vivo.Cooverexpression of SiCBL5,SiCIPK24,and SiSOS1 in yeast conferred a high-salt-tolerance phenotype.Compared to wild-type plants under salt stress conditions,SiCBL5 overexpressors showed lower accumulations of Na^(+) and stronger Na^(+) efflux,whereas RNAi-SiCBL5 plants showed higher accumulations of Na^(+) and weaker Na^(+) efflux.These results indicate that SiCBL5 confers salt tolerance in foxtail millet by modulating Na^(+) homeostasis.
文摘Arid and semi-arid regions of China account for more than half of the country. Because of drought resistance and high nutritive value, elite foxtail millet (Setaria Italica (L.) P. Beauv.) is one of the most important cereal crops in China. Evaluation of germplasm and genetic diversity of foxtail millet is still in its infancy, but prolamin could play an important role as a protein marker. To investigate the genetic diversity and population structure of foxtail millet from different ecological zones of China, 90 accessions of foxtail millet were collected from three major ecological areas: North, Northwest, and Northeast China. The prolamin contents were examined by acid polyacrylamide gel electrophoresis (acid-PAGE). Five to twenty-two prolamin bands appeared in tested varieties, of which were polymorphic, so prolamin patterns of foxtail millet varieties can be used in variety identification and evaluation. Structure analysis identified six groups, which matches their pedigree information but not their geographic origins. This indicated a high degree (87.78%) of consistency with a phylogenetic classification based on SSR. The results showed prolamin banding patterns were an effective method for analyzing foxtail millet genetic variability.
基金supported by the National Natural Science Foundation of China (32241042 and 31771807)the National Key R&D Program of China (2021YFF1000103)+1 种基金the China Agricultural Research System (CARS-06-04)the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences。
文摘Chlorophyll (Chl) content,especially Chl b content,and stomatal conductance (G_s) are the key factors affecting the net photosynthetic rate (P_n).Setaria italica,a diploid C_4 panicoid species with a simple genome and high transformation efficiency,has been widely accepted as a model in photosynthesis and drought-tolerance research.The current study characterized Chl content,G_s,and P_n of 48 Setaria mutants induced by ethyl methanesulfonate.A total of 24,34,and 35 mutants had significant variations in Chl content,G_s,and P_n,respectively.Correlation analysis showed a positive correlation between increased G_s and increased P_n,and a weak correlation between decreased Chl b content and decreased P_n was also found.Remarkably,two mutants behaved with significantly decreased Chl b content but increased P_n compared to Yugu 1.Seven mutants behaved with significantly decreased G_s but did not decrease P_(n )compared to Yugu 1.The current study thus identified various genetic lines,further exploration of which would be beneficial to elucidate the relationship between Chl content,G_s,and P_n and the mechanism underlying why C_4 species are efficient at photosynthesis and water saving.
文摘为探讨谷子(Setaria italica L.)耐旱抗逆机制,解析类受体蛋白激酶(receptor like protein kinase,RLKs)基因功能,进而为培育谷子抗逆新品种提供依据,本文以干旱处理的谷子"豫谷1号"为材料,通过i TRAQ技术筛选到1个干旱响应的类受体蛋白激酶基因,命名为SiRLK35。以谷子RNA反转录的单链cDNA为模板,经PCR扩增获取SiRLK35基因全长序列。应用qRT-PCR方法,对SiRLK35在NaCl、PEG、ABA、GA、Me JA等不同处理下的表达模式进行分析。进一步构建基因原核表达载体pET28a-SiRLK35,结合斑点法对SiRLK35的抗盐能力进行初步评价。同时构建过表达载体p CAMBIA1301P-SiRLK35转化水稻,并对转基因植株抗盐能力进行检测。结果显示:胁迫及激素处理均可不同程度诱导SiRLK35基因的表达;斑点法研究结果显示,在相同NaCl浓度的LB平板上,含有SiRLK35基因的原核表达载体的大肠杆菌菌株生长状态较阴性对照好,SiRLK35具有一定的抗盐能力;获得的转SiRLK35基因水稻植株对盐胁迫的耐受性高于对照。SiRLK35基因对不同胁迫均可以产生响应,但对盐胁迫的响应较为明显,推测该基因可能在谷子的抗盐及抗逆过程中发挥作用。
文摘Using foxtail millet (Setaria italica (L.) Beauv.) male-sterile line 1066A as female parent and Yugu 1 primary trisomic series (1 - 7) and tetrasomics 8, 9 as male parents, chromosome location of gene for male-sterility and yellow seedling in line 1066A was studied by primary trisomic analysis. The plants of F-1 generation of trisomics 2 - 9 were obtained by crossing with a great many plants of 1066A. F-1 generation of trisomics was similar to their male parent in morphologic characters, the color of their seedling was green, and pollen was partially fertile. The segregation ratio of fertility to sterility is 3:1 in F-2 generation of trisomics 2, 3, 4, 5, 7, 8 and 9; and 14:1 only in F-2 generation of trisomic 6 (chi(0.05)(2) = 0.012). The segregation ratio of green seedling to yellow seedling is 12:1 only in F-2 generation of trisomic 7 (chi(0.05)(2) = 0.31), but in other cases, this ratio is 3:1. The results indicated that the male-sterility gene was located on chromosome 6, and the gene for yellow seedling was monogenic recessive and located on chromosome 7. The rate of trisomics transmission by pollen was tested, trisomics 8 and 9 were the highest in rates of trisomics transmission and followed by trisomics 6 and 4.
文摘赤峰显性核不育谷子是在谷子中首次发现的核不育材料,该材料的育性受2对核显性基因互作控制,一对是显性核不育基因Msch,另一对是显性上位育性恢复基因Rf。两者共同存在时显性上位育性恢复基因Rf能抑制显性核不育基因Msch的表达,从而表现可育。利用已构建的不育基因Msch的上位育性恢复基因Rf的近等基因系(NILs)为材料,通过对300对AFLP引物组合进行筛选,找到了与显性上位育性恢复基因Rf紧密连锁的2个AFLP标记(E15/M52和E20/M41),与不育基因的遗传距离分别是7.0c M和12.7 c M,而且位于不育基因的同一侧,标记间相距5.7 c M。
文摘[Objective] The research aimed to study antifeedant activity of Phytolacca acinosa Roxb., Setaria viridis (L.) Beauv and Viola yedoensis Makino extracts against Pieris rapae. [Method] Activity material was extracted from S. viridis (L.), P. acinosa and V. yedoensis using acetone cold soak method, and non-selective antifeedant activity of extracts to Pieris rapae larva was determined by using lobular plate addition method. [Result] The results showed that the acetone leaching agent of P. acinosa had most obvious antifeedant effects on Pieris rapae. The antifeedant rate were 74.53% and 82.34% at 24 and 48 h respectively. With the concentration increasing, the antifeedant effect of P. acinosa extracts increased. The antifeedant rate of 0.050 g/ml treatment was the highest, being 74.53% and 82.34% at 24 and 48 h. [Conclusion] P. acinosa could be studied and utilized as potential botanical insecticide.