BACKGROUND Liver injury is common in severe acute pancreatitis(SAP).Excessive autophagy often leads to an imbalance of homeostasis in hepatocytes,which induces lipid peroxidation and mitochondrial iron deposition and ...BACKGROUND Liver injury is common in severe acute pancreatitis(SAP).Excessive autophagy often leads to an imbalance of homeostasis in hepatocytes,which induces lipid peroxidation and mitochondrial iron deposition and ultimately leads to ferroptosis.Our previous study found that milk fat globule epidermal growth factor 8(MFG-E8)alleviates acinar cell damage during SAP via binding toαvβ3/5 integrins.MFG-E8 also seems to mitigate pancreatic fibrosis via inhibiting chaperone-mediated autophagy.AIM To speculate whether MFG-E8 could also alleviate SAP induced liver injury by restoring the abnormal autophagy flux.METHODS SAP was induced in mice by 2 hly intraperitoneal injections of 4.0 g/kg L-arginine or 7 hly injections of 50μg/kg cerulein plus lipopolysaccharide.mfge8-knockout mice were used to study the effect of MFG-E8 deficiency on SAPinduced liver injury.Cilengitide,a specificαvβ3/5 integrin inhibitor,was used to investigate the possible mechanism of MFG-E8.RESULTS The results showed that MFG-E8 deficiency aggravated SAP-induced liver injury in mice,enhanced autophagy flux in hepatocyte,and worsened the degree of ferroptosis.Exogenous MFG-E8 reduced SAP-induced liver injury in a dose-dependent manner.Mechanistically,MFG-E8 mitigated excessive autophagy and inhibited ferroptosis in liver cells.Cilengitide abolished MFG-E8’s beneficial effects in SAP-induced liver injury.CONCLUSION MFG-E8 acts as an endogenous protective mediator in SAP-induced liver injury.MFG-E8 alleviates the excessive autophagy and inhibits ferroptosis in hepatocytes by binding to integrinαVβ3/5.展开更多
BACKGROUND: Studies have revealed that macrophages play an important role in the development of severe acute pancreatitis (SAP). Activated macrophages can lead to a systemic inflammatory response, induce lipid peroxid...BACKGROUND: Studies have revealed that macrophages play an important role in the development of severe acute pancreatitis (SAP). Activated macrophages can lead to a systemic inflammatory response, induce lipid peroxidation, impair membrane structure, result in injury to the liver and the other extrahepatic organs, and eventually result in multiple organ dysfunction syndrome by promoting excessive secretion of cytokines. Liver injury can further aggravate the systemic inflammatory response and increase mortality by affecting the metabolism of toxins and the release of excessive inflammatory mediators. Clodronate is a synthetic bisphosphonate, which is often used for treating bone changes caused by osteoporosis and other factors. In the current study, we created liposomes containing superparamagnetic iron oxide particles (SPIOs) for macrophage labeling and magnetic resonance imaging, using a novel method that can bind the clodronate to induce apoptosis and deplete macrophages. METHODS: Superparamagnetic Fe(3)O(4) nanoparticles were prepared by chemical coprecipitation. SPIO-containing liposomes and SPIO-clodronate-containing liposomes were prepared by the thin film method. SAP models were prepared by injection of sodium taurocholate (2 ml/kg body weight) into the subcapsular space of the pancreas. Sprague-Dawley rats were randomly divided into a control group, a SAP plus SPIO-liposome group, and a SAP plus SPIO-clodronate-containing group. Two and six hours after SAP models were available, T2-weighted MRI scans (in the same plane) of the livers of rats in each group were performed. At the end of the scans, 2 ml of blood was taken from the superior mesenteric vein to measure the levels of serum amylase, ALT, AST, TNF-alpha, and IL-6. Pathological changes in the liver and pancreas were assessed. RESULTS: Transmission electron microscopy showed that the liposomes had a uniform size. No pathological changes in the pancreata of rats in the control group were noted. The pathological changes in the pancreata and livers of rats in the SAP plus SPIO-clodronate-containing liposome group were milder than those in the SAP plus SPIO-liposome group. The MRI signal intensity of the livers in the SAP plus SPIO-liposome and SAP plus SPIO-clodronate-containing groups was significantly lower than that in the control group. There were significant changes in the two experimental groups (P<0.01). In addition, the levels of serum amylase, ALT, AST, TNF-alpha, and IL-6 in rats in the SAP plus SPIO-liposome group were higher than those in the control group (P<0.01), while the corresponding levels in the SPIO-clodronate-containing liposome group were significantly lower than those in the SAP plus SPIO-liposome group (P<0.01). CONCLUSION: Clodronate-containing liposomes protect against liver injury in SAP rats, and SPIO can be used as a tracer for MRI examination following liver injury in SAP rats. (Hepatobiliary Pancreat Dis Int 2010; 9: 192-200)展开更多
Acute pancreatitis(AP)is a very common acute disease,and the mortality rate of severe AP(SAP)is between 15%and 35%.The main causes of death are multiple organ dysfunction syndrome and infections.The mortality rate of ...Acute pancreatitis(AP)is a very common acute disease,and the mortality rate of severe AP(SAP)is between 15%and 35%.The main causes of death are multiple organ dysfunction syndrome and infections.The mortality rate of patients with SAP related to liver failure is as high as 83%,and approximately 5%of the SAP patients have fulminant liver failure.Liver function is closely related to the progression and prognosis of AP.In this review,we aim to elaborate on the clinical manifestations and mechanism of liver injury in patients with AP.展开更多
AIM To explore the pharmacokinetics and pharmacodynamics of Da-Cheng-Qi decoction (DCQD) in the liver of rats with severe acute pancreatitis (SAP) based on an herbal recipe tissue pharmacology hypothesis. METHODS Heal...AIM To explore the pharmacokinetics and pharmacodynamics of Da-Cheng-Qi decoction (DCQD) in the liver of rats with severe acute pancreatitis (SAP) based on an herbal recipe tissue pharmacology hypothesis. METHODS Healthy male Sprague-Dawley rats were randomly divided into a sham operation group (SOG); a model group (MG); and low-, median- and high-dose treatment groups (LDG, MDG, and HDG, respectively). Different dosages (6, 12 and 24 g/kg for the LDG, MDG, and HDG, respectively) of DCQD were administered to the rats with SAP. The tissue concentrations of aloeemodin, rhein, emodin, chrysophanol, honokiol, rheo chrysophanol, magnolol, hesperidin, naringenin and naringin in the liver of the treated rats were detected by high-performance liquid chromatography tandem mass spectrometry. Alanine transaminase (ALT) and aspartate transaminase (AST) in serum, inflammatory mediators in the liver and pathological scores were evaluated. RESULTS The major components of DCQD were detected in the liver, and their concentrations increased dose-dependently. The high dose of DCQD showed a maximal effect in ameliorating the pathological damages, decreasing the pro-inflammatory mediators tumor necrosis factor-a and interleukin (IL)-6 and increasing anti-inflammatory mediators IL-4 and IL-10 in the liver. The pathological scores in the pancreas for the MG were significantly higher than those for the SOG (P < 0.05). DCQD could reduce the pathological scores in the pancreas and liver of the rats with SAP, especially in the HDG. Compared to the SOG, the ALT and AST levels in serum were higher in the MG (P < 0.05), while there was no statistical difference in the MG and HDG. CONCLUSION DCQD could alleviate liver damage by altering the inflammatory response in rats with SAP based on the liver distribution of its components.展开更多
BACKGROUND: The high mortality of patients with severe acute pancreatitis (SAP) is due to multiorgan dysfunction. The mechanisms of SAP are still obscure. The aim of this study was to investigate the role of nuclear f...BACKGROUND: The high mortality of patients with severe acute pancreatitis (SAP) is due to multiorgan dysfunction. The mechanisms of SAP are still obscure. The aim of this study was to investigate the role of nuclear factor-kappa B (NF-κB) activation in rats with SAP associated with liver injury and the protection effect of triptolide against liver injury in rats with SAP. METHODS: Ninety Wistar rats were randomly divided into three groups (n =30 each group) : severe acute pancreatitis (group P) , treatment with triptolide ( group T), and sham operation (group S). SAP models were induced by retrograde injection of 5% sodium taurocholate to the pancreatic duct. After the model was successfully established, no treatment was given to group P. In group T, triptolide (0. 05 mg/ml) was injected intraperitoneally (0.2 mg/kg). In group S, the abdominal walls of rats were opened, sutured , but not treated. The rats -were sacrificed after operation at 2, 6, and 12 hours, respectively. The serum levels of amylase (AMY) , alanine aminotransferase (ALT), tumor necrosis factor-alpha ( TNF-α) and interleukin-6 (IL-6 ) were determined at three time points (10 rats for each time point). Liver tissues were obtained to detect the activity of NF-κB and to observe their pathological changes with light and electron microscopes. RESULTS: The serum levels of AMY and ALT were higher in groups P and T than in group S. The serum AMY levels were significantly lower in group T than in group P at 12 hours after operation. The serum ALT levels were significantly lower in group T than in group P at 6, 12 hours after operation. At the three time points, the levels of TNF-α and IL-6 in groups P and T increased more significantly than in group S. In group T they were decreased more significantly than in group P at the three time points. In groups P and T, NF-κB activity in liver tissue increased more significantly than in group S at the three time points. The activity of NF-κB was higher in group P than in groups S and T at the three time points. Liver pathological damages were milder in group T than in group P under light and electron microscopes. CONCLUSIONS: NF-κB plays an important role in the pathogenesis of liver injury in rats with SAP. Triptolide can reduce pathological damage to the liver. Its mechanism is to inhibit the activity of NF-κB and to decrease the release of inflammatory mediators.展开更多
Objective: To assess the therapeutic effect of Caspase-1 inhibitor on liver injury in experimental severe acute pancreatitis (SAP). Methods: Forty-two SD rats were randomly divided into 3 groups: healthy controls (HC,...Objective: To assess the therapeutic effect of Caspase-1 inhibitor on liver injury in experimental severe acute pancreatitis (SAP). Methods: Forty-two SD rats were randomly divided into 3 groups: healthy controls (HC, n=6); SAP-S group (n=18); SAP-ICE-I group (n=18). SAP was induced by retrograde infusion of 5% sodium taurocholate into the bili-pancreatic duct in SD rats. HC rats underwent same surgical procedures and duct cannulation without sodium taurocholate. In SAP-S group, rats received the first intraperitoneal injection of isotonic saline 2 h after induction of acute pancreatitis, which was repeated after 12 h. In SAP-ICE-I group, rats were firstly given ICE inhibitor intraperitoneally 2 h after induction of pancreatitis. As in SAP-S group, this was repeated at 12 h. Survied rats were killed at certain time points, and all samples were obtained for subsequent analysis. Results: The serum levels of ALT, AST and IL-1β in SAP-S group were (215.50±58.52)U/L, (372.17±38.05)U/L, (276.77±44.92)pg/ml at 6 h, (396.67±70.29)U/L, (548.50±75.29)U/L, (308.99±34.95)pg/ml at 12 h, (425.17±86.33)U/L, (665.83±84.05)U/L, (311.60±46.51)pg/ml, respectively, which were increased significantly (P<0.01, vs HC). In SAP-ICE-I group, their levels were decreased significantly (P<0.01, vs SAP-S). Intrahepatic expressions of Caspase-1, IL-1β and IL-18 mRNA could be observed in HC, which were increased significantly in SAP-S group (P<0.01, vs HC). The expressions of IL-1β and IL-18 mRNA were decreased significantly in SAP-ICE-I group (P<0.01, vs SAP-S), whereas Caspase-1 mRNA expressions had no significant differences (P>0.05). Caspase-1 inhibition had no effect on the severity of liver tissue damage. Conclusion: Caspase-1 activate cytokines, IL-1β and IL-18, play a pivotal role in the course of liver injury in SAP. Caspase-1 inhibitor can improve liver functions effectively.展开更多
基金Supported by the National Natural Science Foundation of China,No.82100685the Scientific Research Fund of Xi’an Health Commission,No.2021yb08+1 种基金Scientific Research Fund of Xi’an Central Hospital,No.2022QN07Innovation Capability Support Plan of Xi’an Science and Technology Bureau,No.23YXYJ0097.
文摘BACKGROUND Liver injury is common in severe acute pancreatitis(SAP).Excessive autophagy often leads to an imbalance of homeostasis in hepatocytes,which induces lipid peroxidation and mitochondrial iron deposition and ultimately leads to ferroptosis.Our previous study found that milk fat globule epidermal growth factor 8(MFG-E8)alleviates acinar cell damage during SAP via binding toαvβ3/5 integrins.MFG-E8 also seems to mitigate pancreatic fibrosis via inhibiting chaperone-mediated autophagy.AIM To speculate whether MFG-E8 could also alleviate SAP induced liver injury by restoring the abnormal autophagy flux.METHODS SAP was induced in mice by 2 hly intraperitoneal injections of 4.0 g/kg L-arginine or 7 hly injections of 50μg/kg cerulein plus lipopolysaccharide.mfge8-knockout mice were used to study the effect of MFG-E8 deficiency on SAPinduced liver injury.Cilengitide,a specificαvβ3/5 integrin inhibitor,was used to investigate the possible mechanism of MFG-E8.RESULTS The results showed that MFG-E8 deficiency aggravated SAP-induced liver injury in mice,enhanced autophagy flux in hepatocyte,and worsened the degree of ferroptosis.Exogenous MFG-E8 reduced SAP-induced liver injury in a dose-dependent manner.Mechanistically,MFG-E8 mitigated excessive autophagy and inhibited ferroptosis in liver cells.Cilengitide abolished MFG-E8’s beneficial effects in SAP-induced liver injury.CONCLUSION MFG-E8 acts as an endogenous protective mediator in SAP-induced liver injury.MFG-E8 alleviates the excessive autophagy and inhibits ferroptosis in hepatocytes by binding to integrinαVβ3/5.
基金supported by grants from the National Natural Science Foundation of China(No.30772117)the Natural Science Foundation of Jiangsu Province(No.BK2007096)
文摘BACKGROUND: Studies have revealed that macrophages play an important role in the development of severe acute pancreatitis (SAP). Activated macrophages can lead to a systemic inflammatory response, induce lipid peroxidation, impair membrane structure, result in injury to the liver and the other extrahepatic organs, and eventually result in multiple organ dysfunction syndrome by promoting excessive secretion of cytokines. Liver injury can further aggravate the systemic inflammatory response and increase mortality by affecting the metabolism of toxins and the release of excessive inflammatory mediators. Clodronate is a synthetic bisphosphonate, which is often used for treating bone changes caused by osteoporosis and other factors. In the current study, we created liposomes containing superparamagnetic iron oxide particles (SPIOs) for macrophage labeling and magnetic resonance imaging, using a novel method that can bind the clodronate to induce apoptosis and deplete macrophages. METHODS: Superparamagnetic Fe(3)O(4) nanoparticles were prepared by chemical coprecipitation. SPIO-containing liposomes and SPIO-clodronate-containing liposomes were prepared by the thin film method. SAP models were prepared by injection of sodium taurocholate (2 ml/kg body weight) into the subcapsular space of the pancreas. Sprague-Dawley rats were randomly divided into a control group, a SAP plus SPIO-liposome group, and a SAP plus SPIO-clodronate-containing group. Two and six hours after SAP models were available, T2-weighted MRI scans (in the same plane) of the livers of rats in each group were performed. At the end of the scans, 2 ml of blood was taken from the superior mesenteric vein to measure the levels of serum amylase, ALT, AST, TNF-alpha, and IL-6. Pathological changes in the liver and pancreas were assessed. RESULTS: Transmission electron microscopy showed that the liposomes had a uniform size. No pathological changes in the pancreata of rats in the control group were noted. The pathological changes in the pancreata and livers of rats in the SAP plus SPIO-clodronate-containing liposome group were milder than those in the SAP plus SPIO-liposome group. The MRI signal intensity of the livers in the SAP plus SPIO-liposome and SAP plus SPIO-clodronate-containing groups was significantly lower than that in the control group. There were significant changes in the two experimental groups (P<0.01). In addition, the levels of serum amylase, ALT, AST, TNF-alpha, and IL-6 in rats in the SAP plus SPIO-liposome group were higher than those in the control group (P<0.01), while the corresponding levels in the SPIO-clodronate-containing liposome group were significantly lower than those in the SAP plus SPIO-liposome group (P<0.01). CONCLUSION: Clodronate-containing liposomes protect against liver injury in SAP rats, and SPIO can be used as a tracer for MRI examination following liver injury in SAP rats. (Hepatobiliary Pancreat Dis Int 2010; 9: 192-200)
文摘Acute pancreatitis(AP)is a very common acute disease,and the mortality rate of severe AP(SAP)is between 15%and 35%.The main causes of death are multiple organ dysfunction syndrome and infections.The mortality rate of patients with SAP related to liver failure is as high as 83%,and approximately 5%of the SAP patients have fulminant liver failure.Liver function is closely related to the progression and prognosis of AP.In this review,we aim to elaborate on the clinical manifestations and mechanism of liver injury in patients with AP.
基金Supported by National Natural Science Foundation of China,No.81374042,No.81370091 and No.81573857
文摘AIM To explore the pharmacokinetics and pharmacodynamics of Da-Cheng-Qi decoction (DCQD) in the liver of rats with severe acute pancreatitis (SAP) based on an herbal recipe tissue pharmacology hypothesis. METHODS Healthy male Sprague-Dawley rats were randomly divided into a sham operation group (SOG); a model group (MG); and low-, median- and high-dose treatment groups (LDG, MDG, and HDG, respectively). Different dosages (6, 12 and 24 g/kg for the LDG, MDG, and HDG, respectively) of DCQD were administered to the rats with SAP. The tissue concentrations of aloeemodin, rhein, emodin, chrysophanol, honokiol, rheo chrysophanol, magnolol, hesperidin, naringenin and naringin in the liver of the treated rats were detected by high-performance liquid chromatography tandem mass spectrometry. Alanine transaminase (ALT) and aspartate transaminase (AST) in serum, inflammatory mediators in the liver and pathological scores were evaluated. RESULTS The major components of DCQD were detected in the liver, and their concentrations increased dose-dependently. The high dose of DCQD showed a maximal effect in ameliorating the pathological damages, decreasing the pro-inflammatory mediators tumor necrosis factor-a and interleukin (IL)-6 and increasing anti-inflammatory mediators IL-4 and IL-10 in the liver. The pathological scores in the pancreas for the MG were significantly higher than those for the SOG (P < 0.05). DCQD could reduce the pathological scores in the pancreas and liver of the rats with SAP, especially in the HDG. Compared to the SOG, the ALT and AST levels in serum were higher in the MG (P < 0.05), while there was no statistical difference in the MG and HDG. CONCLUSION DCQD could alleviate liver damage by altering the inflammatory response in rats with SAP based on the liver distribution of its components.
文摘BACKGROUND: The high mortality of patients with severe acute pancreatitis (SAP) is due to multiorgan dysfunction. The mechanisms of SAP are still obscure. The aim of this study was to investigate the role of nuclear factor-kappa B (NF-κB) activation in rats with SAP associated with liver injury and the protection effect of triptolide against liver injury in rats with SAP. METHODS: Ninety Wistar rats were randomly divided into three groups (n =30 each group) : severe acute pancreatitis (group P) , treatment with triptolide ( group T), and sham operation (group S). SAP models were induced by retrograde injection of 5% sodium taurocholate to the pancreatic duct. After the model was successfully established, no treatment was given to group P. In group T, triptolide (0. 05 mg/ml) was injected intraperitoneally (0.2 mg/kg). In group S, the abdominal walls of rats were opened, sutured , but not treated. The rats -were sacrificed after operation at 2, 6, and 12 hours, respectively. The serum levels of amylase (AMY) , alanine aminotransferase (ALT), tumor necrosis factor-alpha ( TNF-α) and interleukin-6 (IL-6 ) were determined at three time points (10 rats for each time point). Liver tissues were obtained to detect the activity of NF-κB and to observe their pathological changes with light and electron microscopes. RESULTS: The serum levels of AMY and ALT were higher in groups P and T than in group S. The serum AMY levels were significantly lower in group T than in group P at 12 hours after operation. The serum ALT levels were significantly lower in group T than in group P at 6, 12 hours after operation. At the three time points, the levels of TNF-α and IL-6 in groups P and T increased more significantly than in group S. In group T they were decreased more significantly than in group P at the three time points. In groups P and T, NF-κB activity in liver tissue increased more significantly than in group S at the three time points. The activity of NF-κB was higher in group P than in groups S and T at the three time points. Liver pathological damages were milder in group T than in group P under light and electron microscopes. CONCLUSIONS: NF-κB plays an important role in the pathogenesis of liver injury in rats with SAP. Triptolide can reduce pathological damage to the liver. Its mechanism is to inhibit the activity of NF-κB and to decrease the release of inflammatory mediators.
文摘Objective: To assess the therapeutic effect of Caspase-1 inhibitor on liver injury in experimental severe acute pancreatitis (SAP). Methods: Forty-two SD rats were randomly divided into 3 groups: healthy controls (HC, n=6); SAP-S group (n=18); SAP-ICE-I group (n=18). SAP was induced by retrograde infusion of 5% sodium taurocholate into the bili-pancreatic duct in SD rats. HC rats underwent same surgical procedures and duct cannulation without sodium taurocholate. In SAP-S group, rats received the first intraperitoneal injection of isotonic saline 2 h after induction of acute pancreatitis, which was repeated after 12 h. In SAP-ICE-I group, rats were firstly given ICE inhibitor intraperitoneally 2 h after induction of pancreatitis. As in SAP-S group, this was repeated at 12 h. Survied rats were killed at certain time points, and all samples were obtained for subsequent analysis. Results: The serum levels of ALT, AST and IL-1β in SAP-S group were (215.50±58.52)U/L, (372.17±38.05)U/L, (276.77±44.92)pg/ml at 6 h, (396.67±70.29)U/L, (548.50±75.29)U/L, (308.99±34.95)pg/ml at 12 h, (425.17±86.33)U/L, (665.83±84.05)U/L, (311.60±46.51)pg/ml, respectively, which were increased significantly (P<0.01, vs HC). In SAP-ICE-I group, their levels were decreased significantly (P<0.01, vs SAP-S). Intrahepatic expressions of Caspase-1, IL-1β and IL-18 mRNA could be observed in HC, which were increased significantly in SAP-S group (P<0.01, vs HC). The expressions of IL-1β and IL-18 mRNA were decreased significantly in SAP-ICE-I group (P<0.01, vs SAP-S), whereas Caspase-1 mRNA expressions had no significant differences (P>0.05). Caspase-1 inhibition had no effect on the severity of liver tissue damage. Conclusion: Caspase-1 activate cytokines, IL-1β and IL-18, play a pivotal role in the course of liver injury in SAP. Caspase-1 inhibitor can improve liver functions effectively.