期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
The Characteristics of Cloud-to-Ground Lightning Activity with Severe Thunderstorm Wind in South and North China 被引量:3
1
作者 YANG Xin-Lin SUN Jian-Hua 《Atmospheric and Oceanic Science Letters》 CSCD 2014年第6期571-576,共6页
The characteristics of cloud-to-ground(CG) lightning activity with severe thunderstorm wind(STW) in South and North China are analyzed using CG lightning data, radar data, and serious weather reports. The percentage o... The characteristics of cloud-to-ground(CG) lightning activity with severe thunderstorm wind(STW) in South and North China are analyzed using CG lightning data, radar data, and serious weather reports. The percentage of positive CG(PCG) flashes with STW in North China is larger than that in South China. STW takes place during the period when the total CG and PCG density is increasing fastest. STW also occurs close to the high-value center of CG and PCG density. In North China, the CG and PCG density in the grid of STW maximizes approximately 20 minutes after the STW occurs; while in South China, the PCG density and percentage of PCG in the grid of STW maximizes about 10 minutes before the occurrence of STW. The high-value centers of CG density and PCG density in North China move slightly faster than those in South China, which is opposite to the rate of increasing CG activity. 展开更多
关键词 cloud-to-ground lightning severe thunderstorm wind severe convection
下载PDF
Understanding the dynamical-microphysical-electrical processes associated with severe thunderstorms over the Beijing metropolitan region 被引量:2
2
作者 Xiushu QIE Shanfeng YUAN +24 位作者 Zhixiong CHEN Dongfeng WANG Dongxia LIU Mengyu SUN Zhuling SUN Abhay SRIVASTAVA Hongbo ZHANG Jingyu LU Hui XIAO Yongheng BI Liang FENG Ye TIAN Yan XU Rubin JIANG Mingyuan LIU Xian XIAO Shu DUAN Debin SU Chengyun SUN Wenjing XU Yijun ZHANG Gaopeng LU Da-Lin ZHANG Yan YIN Ye YU 《Science China Earth Sciences》 SCIE EI CSCD 2021年第1期10-26,共17页
The Dynamical-microphysical-electrical Processes in Severe Thunderstorms and Lightning Hazards(STORM973)project conducted coordinated comprehensive field observations of thunderstorms in the Beijing metropolitan regio... The Dynamical-microphysical-electrical Processes in Severe Thunderstorms and Lightning Hazards(STORM973)project conducted coordinated comprehensive field observations of thunderstorms in the Beijing metropolitan region(BMR)during the warm season from 2014 to 2018.The aim of the project was to understand how dynamical,microphysical and electrical processes interact in severe thunderstorms in the BMR,and how to assimilate lightning data in numerical weather prediction models to improve severe thunderstorm forecasts.The platforms used in the field campaign included the Beijing Lightning Network(BLNET,consisting of 16 stations),2 X-band dual linear polarimetric Doppler radars,and 4 laser raindrop spectrometers.The collaboration also made use of the China Meteorological Administration’s mesoscale meteorological observation network in the Beijing-Tianjin-Hebei region.Although diverse thunderstorm types were documented,it was found that squall lines and multicell storms were the two major categories of severe thunderstorms with frequent lightning activity and extreme rainfall or unexpected local short-duration heavy rainfall resulting in inundations in the central urban area,influenced by the terrain and environmental conditions.The flash density maximums were found in eastern Changping District,central and eastern Shunyi District,and the central urban area of Beijing,suggesting that the urban heat island effect has a crucial role in the intensification of thunderstorms over Beijing.In addition,the flash rate associated with super thunderstorms can reach hundreds of flashes per minute in the central city regions.The super(5%of the total),strong(35%),and weak(60%)thunderstorms contributed about 37%,56%,and 7%to the total flashes in the BMR,respectively.Owing to the close connection between lightning activity and the thermodynamic and microphysical characteristics of the thunderstorms,the lightning flash rate can be used as an indicator of severe weather events,such as hail and short-duration heavy rainfall.Lightning data can also be assimilated into numerical weather prediction models to help improve the forecasting of severe convection and precipitation at the cloud-resolved scale,through adjusting or correcting the thermodynamic and microphysical parameters of the model. 展开更多
关键词 Lightning 3D location Dual linear polarimetric Doppler radar severe thunderstorm Lightning data assimilation HAIL Short-term heavy precipitation
原文传递
Occurrence conditions of positive cloud-to-ground flashes in severe thunderstorms 被引量:6
3
作者 GUO Feng Xia LU Gan Yi +4 位作者 WU Xin WANG Hao Liang LIU Zu Pei BAO Min LI Ya Wen 《Science China Earth Sciences》 SCIE EI CAS CSCD 2016年第7期1401-1413,共13页
The purpose of this study was to understand the reasons why frequent positive cloud-to-ground(+CG) flashes occur in severe thunderstorms. A three-dimensional dynamics-electrification coupled model was used to simulate... The purpose of this study was to understand the reasons why frequent positive cloud-to-ground(+CG) flashes occur in severe thunderstorms. A three-dimensional dynamics-electrification coupled model was used to simulate a severe thunderstorm to permit analysis of the conditions that might easily cause +CG flashes. The results showed that strong updrafts play an important role in the occurrence of intracloud flashes. However, frequent +CG flashes require not only strong updrafts but also strong downdrafts in the lower cloud region, conditions that correspond to the later phase of the mature stage and the period of the heaviest solid precipitation of a thunderstorm. During this stage, strong updrafts elevated each charge area in the updraft region to a higher level, which resulted in an inverted tripole charge structure. A wide mid-level region of strong positive charge caused largely by positively charged graupel, presented in the middle of the updraft region because of a non-inductive ice-ice collisional charging mechanism. The charge structure in the downdraft region was consistently more complex and revealed several vertically stacked charge regions, alternating in polarity. Much of the graupel/hail outside the updrafts was lowered to cloud-base by strong downdrafts. In this area, the graupel/hail was charged negatively because of the transportation of negatively charged graupel/hail from higher regions of negative charge in the updrafts, and via the inductive charging mechanism of collisions between graupel/hail and cloud droplets at the bottom of the cloud. Consequently, a large region of negative charge formed near the ground. This meant that +CG flashes were initiated more easily in the lower inverted dipole, i.e., the middle region of positive charge and lower region of negative charge. Frequent +CG flashes began almost synchronously with dramatic increases in the storm updrafts, hail volume, and total flash rate. Therefore, the occurrence of +CG flashes appears a good indicator of storm intensification and it could have some use as a predictor of severe weather in the form of hail. 展开更多
关键词 severe thunderstorm +CG flash Updraft Downdraft Graupel Hail Charge structure
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部