Human μ-opioid receptor (HμOR) with a tag of six consecutive histidines at its carboxyl terminus had been expressed in recombinant baculovirus infected Sf9 insect cells.The maximal binding capacity for the [3H] di...Human μ-opioid receptor (HμOR) with a tag of six consecutive histidines at its carboxyl terminus had been expressed in recombinant baculovirus infected Sf9 insect cells.The maximal binding capacity for the [3H] diprenorphine and [3H]ohmefentanyl (Ohm) were 9.1± 0.7 and 6.52±0.23 nmol/g protein, respectively. The [3H] diprenorphine or [3H] Ohm binding to the receptor expressed in Sf9 cells was strongly inhibited by μ-selective agonists [D-Ala2], N-methylPhe4, glyol5]enkephalin (DAGO), Ohm, and morphine, but neither by δ nor by K selective agonist. Na+ (100 mM) and GTP (50 μM) could reduce HμOR agonists etorphine and Ohm affinity binding to the overexpressed HμOR. μ-selective agonists DAGO and Ohm effectively stimulated [35S]GTPγS binding (EC50 = 2.7nM and 6.9 nM) and inhibited forskolin- stimulated cAMP accumulation (IC50 = 0.9 nM and 0.3 nM). The agonist-dependent effects could be blocked by opioid antagonist naloxone or by pretreatment of cells with pertussis toxin (PTX). These results demonstrated that HμOR overexpressed in Sf9 insect cells functionally coupled to endogenous Gi/o proteins.展开更多
目的利用昆虫细胞/杆状病毒系统表达细粒棘球蚴Eg95-Eg.ferritin融合蛋白,用于开发包虫病新型疫苗以及建立相关血清学诊断方法等研究。方法从细粒棘球蚴包囊中分离原头节,超声粉碎后提取总RNA为模板,通过RT-PCR扩增细粒棘球蚴Eg95和Eg.f...目的利用昆虫细胞/杆状病毒系统表达细粒棘球蚴Eg95-Eg.ferritin融合蛋白,用于开发包虫病新型疫苗以及建立相关血清学诊断方法等研究。方法从细粒棘球蚴包囊中分离原头节,超声粉碎后提取总RNA为模板,通过RT-PCR扩增细粒棘球蚴Eg95和Eg.ferritin基因,采用基因拼接法将Eg95和Eg.ferritin融合,将该融合基因Eg95-Eg.ferritin插入到p Fast Bac DUAL载体中,构建重组转座载体后转化DH10Bac感受态细胞,获得重组Bacmid质粒后转染Sf-9昆虫细胞,传毒3代,对表达蛋白进行Western blot鉴定。结果成功克隆了Eg95和Eg.ferritin基因,通过柔性氨基酸linker成功获得了融合基因Eg95-Eg.ferritin,经PCR和酶切鉴定成功构建了重组质粒p Fast Bac DUAL-Eg95-Eg.ferritin,Western blot结果证实表达蛋白能够被包虫病人标准阳性血清识别。结论在Bac-to-Bac杆状病毒表达系统中成功表达了细粒棘球蚴Eg95-Eg.ferritin融合蛋白,与包虫病人标准阳性血清具有良好的反应性。展开更多
Mature porcine interleukin-2 (pIL-2) gene was amplified by PCR from the plasmid pGEM-T-pIL2 and cloned into the baculovirus pFastBacTM Dual vector of the Bac-to-Bac baculovirus expression system under the control of...Mature porcine interleukin-2 (pIL-2) gene was amplified by PCR from the plasmid pGEM-T-pIL2 and cloned into the baculovirus pFastBacTM Dual vector of the Bac-to-Bac baculovirus expression system under the control of the PH promoter. Recombinant plL-2 (rpIL-2) expressed in Sf9 insect cells was detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunofluorescence assay. Western blot analysis confirmed that the rpIL-2 protein had a molecular mass of 20 kDa, which was larger than the molecular mass of the mature protein predicted based on its peptide sequence. The rpIL-2 protein induced in vitro proliferation of ConA-stimulated porcine splenocytes and enhanced in vivo protective immune responses induced by vaccinating the pigs with inactivated oil emulsion vaccine against swine influenza virus. The results showed that the rpIL-2 expressed in Sf9 insect cells has immunoenhancement effects; the finding lays the foundation for the preparation of a specific recombinant IL-2 protein and the development of a novel immune adjuvant of vaccines against various infectious porcine pathogens to increase the immunoprotective efficacy of vaccines.展开更多
To obtain the P8 protein of Rice gall dwarf virus (RGDV) with biological activity,its outer coat protein gene S8 was expressed in Spodoptera frugiperda (Sf9) insect cells using the baculovirus expression system.The S8...To obtain the P8 protein of Rice gall dwarf virus (RGDV) with biological activity,its outer coat protein gene S8 was expressed in Spodoptera frugiperda (Sf9) insect cells using the baculovirus expression system.The S8 gene was subcloned into the pFastBacTM1 vector,to produce the recombinant baculovirus transfer vector pFB-S8.After transformation,pFB-S8 was introduced into the competent cells (E.coli DH10Bac) containing a shuttle vector,Bacmid,generating the recombinant bacmid rbpFB-S8.After being infected by recombinant baculovirus rvpFB-S8 at different multiplicities of infection,Sf9 cells were collected at different times and analyzed by SDS-PAGE,Western blotting and immunofluorescence microscopy.The expression level of the P8 protein was highest between 48-72 h after transfection of Sf9 cells.Immunofluorescence microscopy showed that P8 protein of RGDV formed punctate structures in the cytoplasm of Sf9 cells.展开更多
While CrylAc has been known to bind with larval midgut proteins cad- herin, APN (amino peptidase N), ALP (alkaline phosphatase) and ABCC2 (adenosine triphosphate-binding cassette transporter subfamily C2), littl...While CrylAc has been known to bind with larval midgut proteins cad- herin, APN (amino peptidase N), ALP (alkaline phosphatase) and ABCC2 (adenosine triphosphate-binding cassette transporter subfamily C2), little is known about the recep- tors of Cry2Ab. To provide a clue to the receptors of Cry2Ab, we tested the baseline cytotoxicity of activated Cry 1Ac and Cry2Ab against the midgut and fat body cell lines of Helicoverpa zea and the ovary cell line ofSpodopterafrugiperda (SFg). As expected, the descending order of cytotoxicity of CrylAc against the three cell lines in terms of 50% lethal concetration (LC50) was midgut (31.0μg/mL) 〉 fat body (59.0μg/mL) and SF9 cell (99.6μg/mL). By contrast, the fat body cell line (LC50 = 7.55μg/mL) was about twice more susceptible to Cry2Ab than the midgut cell line (16.0/xg/mL), the susceptibility of which was not significantly greater than that of SF9 cells (27.0μg/mL). Further, ligand blot showed the binding differences between CrylAc and Cry2Ab in the three cell lines. These results indicated that the receptors of Cry2Ab were enriched in fat body cells and thus largely different from the receptors of CrylAc, which were enriched in midgut cells.展开更多
文摘Human μ-opioid receptor (HμOR) with a tag of six consecutive histidines at its carboxyl terminus had been expressed in recombinant baculovirus infected Sf9 insect cells.The maximal binding capacity for the [3H] diprenorphine and [3H]ohmefentanyl (Ohm) were 9.1± 0.7 and 6.52±0.23 nmol/g protein, respectively. The [3H] diprenorphine or [3H] Ohm binding to the receptor expressed in Sf9 cells was strongly inhibited by μ-selective agonists [D-Ala2], N-methylPhe4, glyol5]enkephalin (DAGO), Ohm, and morphine, but neither by δ nor by K selective agonist. Na+ (100 mM) and GTP (50 μM) could reduce HμOR agonists etorphine and Ohm affinity binding to the overexpressed HμOR. μ-selective agonists DAGO and Ohm effectively stimulated [35S]GTPγS binding (EC50 = 2.7nM and 6.9 nM) and inhibited forskolin- stimulated cAMP accumulation (IC50 = 0.9 nM and 0.3 nM). The agonist-dependent effects could be blocked by opioid antagonist naloxone or by pretreatment of cells with pertussis toxin (PTX). These results demonstrated that HμOR overexpressed in Sf9 insect cells functionally coupled to endogenous Gi/o proteins.
文摘目的利用昆虫细胞/杆状病毒系统表达细粒棘球蚴Eg95-Eg.ferritin融合蛋白,用于开发包虫病新型疫苗以及建立相关血清学诊断方法等研究。方法从细粒棘球蚴包囊中分离原头节,超声粉碎后提取总RNA为模板,通过RT-PCR扩增细粒棘球蚴Eg95和Eg.ferritin基因,采用基因拼接法将Eg95和Eg.ferritin融合,将该融合基因Eg95-Eg.ferritin插入到p Fast Bac DUAL载体中,构建重组转座载体后转化DH10Bac感受态细胞,获得重组Bacmid质粒后转染Sf-9昆虫细胞,传毒3代,对表达蛋白进行Western blot鉴定。结果成功克隆了Eg95和Eg.ferritin基因,通过柔性氨基酸linker成功获得了融合基因Eg95-Eg.ferritin,经PCR和酶切鉴定成功构建了重组质粒p Fast Bac DUAL-Eg95-Eg.ferritin,Western blot结果证实表达蛋白能够被包虫病人标准阳性血清识别。结论在Bac-to-Bac杆状病毒表达系统中成功表达了细粒棘球蚴Eg95-Eg.ferritin融合蛋白,与包虫病人标准阳性血清具有良好的反应性。
基金supported by a grant from the the Key Technology R&D Program of China (2008BADB2B01)
文摘Mature porcine interleukin-2 (pIL-2) gene was amplified by PCR from the plasmid pGEM-T-pIL2 and cloned into the baculovirus pFastBacTM Dual vector of the Bac-to-Bac baculovirus expression system under the control of the PH promoter. Recombinant plL-2 (rpIL-2) expressed in Sf9 insect cells was detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunofluorescence assay. Western blot analysis confirmed that the rpIL-2 protein had a molecular mass of 20 kDa, which was larger than the molecular mass of the mature protein predicted based on its peptide sequence. The rpIL-2 protein induced in vitro proliferation of ConA-stimulated porcine splenocytes and enhanced in vivo protective immune responses induced by vaccinating the pigs with inactivated oil emulsion vaccine against swine influenza virus. The results showed that the rpIL-2 expressed in Sf9 insect cells has immunoenhancement effects; the finding lays the foundation for the preparation of a specific recombinant IL-2 protein and the development of a novel immune adjuvant of vaccines against various infectious porcine pathogens to increase the immunoprotective efficacy of vaccines.
基金supported by the National Science Foundation of China (30970135)The Key Project of Genetically Modified Organisms Breeding(2009ZX08009-044B)+1 种基金the Natural Science Foundation of Fujian Province of China (No.2006J0065)the Public-interest Scientific Institution Basal Research Fund of Fujian Province (2009R10029-3)
文摘To obtain the P8 protein of Rice gall dwarf virus (RGDV) with biological activity,its outer coat protein gene S8 was expressed in Spodoptera frugiperda (Sf9) insect cells using the baculovirus expression system.The S8 gene was subcloned into the pFastBacTM1 vector,to produce the recombinant baculovirus transfer vector pFB-S8.After transformation,pFB-S8 was introduced into the competent cells (E.coli DH10Bac) containing a shuttle vector,Bacmid,generating the recombinant bacmid rbpFB-S8.After being infected by recombinant baculovirus rvpFB-S8 at different multiplicities of infection,Sf9 cells were collected at different times and analyzed by SDS-PAGE,Western blotting and immunofluorescence microscopy.The expression level of the P8 protein was highest between 48-72 h after transfection of Sf9 cells.Immunofluorescence microscopy showed that P8 protein of RGDV formed punctate structures in the cytoplasm of Sf9 cells.
文摘While CrylAc has been known to bind with larval midgut proteins cad- herin, APN (amino peptidase N), ALP (alkaline phosphatase) and ABCC2 (adenosine triphosphate-binding cassette transporter subfamily C2), little is known about the recep- tors of Cry2Ab. To provide a clue to the receptors of Cry2Ab, we tested the baseline cytotoxicity of activated Cry 1Ac and Cry2Ab against the midgut and fat body cell lines of Helicoverpa zea and the ovary cell line ofSpodopterafrugiperda (SFg). As expected, the descending order of cytotoxicity of CrylAc against the three cell lines in terms of 50% lethal concetration (LC50) was midgut (31.0μg/mL) 〉 fat body (59.0μg/mL) and SF9 cell (99.6μg/mL). By contrast, the fat body cell line (LC50 = 7.55μg/mL) was about twice more susceptible to Cry2Ab than the midgut cell line (16.0/xg/mL), the susceptibility of which was not significantly greater than that of SF9 cells (27.0μg/mL). Further, ligand blot showed the binding differences between CrylAc and Cry2Ab in the three cell lines. These results indicated that the receptors of Cry2Ab were enriched in fat body cells and thus largely different from the receptors of CrylAc, which were enriched in midgut cells.