An adaptive background model based on max-imum statistical probability and a shadow suppression scheme for indoor and outdoor people detection by exploiting hue saturation value(HSV)color information is proposed.To ob...An adaptive background model based on max-imum statistical probability and a shadow suppression scheme for indoor and outdoor people detection by exploiting hue saturation value(HSV)color information is proposed.To obtain the initial background scene,the frequency of R,G,and B component values for each pixel at the same position in the learning sequence are respec-tively calculated;the R,G,and B component values with the biggest ratios are incorporated to model the initial background.The background maintenance,or the so-called background re-initiation,is also proposed to adapt to scene changes such as illumination changes and scene geometry changes.Moving cast shadows generally exhibit a challenge for accurate moving target detection.Based on the observation that a shadow cast on a background region lowers its brightness but does not change its chro-maticity significantly,we address this problem in the ar-ticle by exploiting HSV color information.In addition,quantitative metrics is introduced to evaluate the algo-rithm on a benchmark suite of indoor and outdoor video sequences.The experimental results are given to show the performance of the algorithm.展开更多
文摘An adaptive background model based on max-imum statistical probability and a shadow suppression scheme for indoor and outdoor people detection by exploiting hue saturation value(HSV)color information is proposed.To obtain the initial background scene,the frequency of R,G,and B component values for each pixel at the same position in the learning sequence are respec-tively calculated;the R,G,and B component values with the biggest ratios are incorporated to model the initial background.The background maintenance,or the so-called background re-initiation,is also proposed to adapt to scene changes such as illumination changes and scene geometry changes.Moving cast shadows generally exhibit a challenge for accurate moving target detection.Based on the observation that a shadow cast on a background region lowers its brightness but does not change its chro-maticity significantly,we address this problem in the ar-ticle by exploiting HSV color information.In addition,quantitative metrics is introduced to evaluate the algo-rithm on a benchmark suite of indoor and outdoor video sequences.The experimental results are given to show the performance of the algorithm.