期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
结合机器学习的SSR代理下App流量识别方法
被引量:
2
1
作者
郭刚
杨超
+1 位作者
陈明哲
马建峰
《西安电子科技大学学报》
EI
CAS
CSCD
北大核心
2023年第2期138-146,共9页
提出了一种基于机器学习的ShadowSocksR代理下的App流量识别方案。目的是识别出智能手机产生的ShadowSocksR代理流量来源于哪款APP。该方案包含流量预处理、特征提取和模型构建。首先将智能手机产生的ShadowSocksR流量对应的数据包集合...
提出了一种基于机器学习的ShadowSocksR代理下的App流量识别方案。目的是识别出智能手机产生的ShadowSocksR代理流量来源于哪款APP。该方案包含流量预处理、特征提取和模型构建。首先将智能手机产生的ShadowSocksR流量对应的数据包集合,按照到达时间间隔以及源目的IP地址和端口这两部分信息将其划分为细粒度的流数据分组;再将包含数据包较少的流数据分组进行进一步的过滤,目的是过滤掉后台App或者智能手机操作系统产生的干扰流量识别的噪音流量;之后,从过滤后的流数据分组集合中提取数据包长度统计特征与分布特征、时间统计特征、数据包频率特征、数据包过滤比例特征、前后流结合特征的特征向量组成特征矩阵,输入机器学习算法得到App流量识别模型,对于需要识别的ShadowSocksR流量经过相同处理步骤得到特征矩阵后,输入App流量识别模型即可得到流量识别结果。实验结果表明,该流量识别方法对于ShadowSocksR代理下的App流量识别可以到达97%以上的准确率。
展开更多
关键词
shadowsocksr
智能手机App流量识别
机器学习
下载PDF
职称材料
题名
结合机器学习的SSR代理下App流量识别方法
被引量:
2
1
作者
郭刚
杨超
陈明哲
马建峰
机构
西安电子科技大学网络与信息安全学院
出处
《西安电子科技大学学报》
EI
CAS
CSCD
北大核心
2023年第2期138-146,共9页
基金
国家自然科学基金青年基金(61906143,61702398)
陕西省重点研发计划(重点产业创新链)(2018ZDCXL-G-9-5)
陕西省2022年自然科学基础研究计划-青年项目(2022JQ-658)。
文摘
提出了一种基于机器学习的ShadowSocksR代理下的App流量识别方案。目的是识别出智能手机产生的ShadowSocksR代理流量来源于哪款APP。该方案包含流量预处理、特征提取和模型构建。首先将智能手机产生的ShadowSocksR流量对应的数据包集合,按照到达时间间隔以及源目的IP地址和端口这两部分信息将其划分为细粒度的流数据分组;再将包含数据包较少的流数据分组进行进一步的过滤,目的是过滤掉后台App或者智能手机操作系统产生的干扰流量识别的噪音流量;之后,从过滤后的流数据分组集合中提取数据包长度统计特征与分布特征、时间统计特征、数据包频率特征、数据包过滤比例特征、前后流结合特征的特征向量组成特征矩阵,输入机器学习算法得到App流量识别模型,对于需要识别的ShadowSocksR流量经过相同处理步骤得到特征矩阵后,输入App流量识别模型即可得到流量识别结果。实验结果表明,该流量识别方法对于ShadowSocksR代理下的App流量识别可以到达97%以上的准确率。
关键词
shadowsocksr
智能手机App流量识别
机器学习
Keywords
shadowsocksr
smartphone app traffic identification
machine learning
分类号
TP309 [自动化与计算机技术—计算机系统结构]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
结合机器学习的SSR代理下App流量识别方法
郭刚
杨超
陈明哲
马建峰
《西安电子科技大学学报》
EI
CAS
CSCD
北大核心
2023
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部