期刊文献+
共找到90篇文章
< 1 2 5 >
每页显示 20 50 100
Shake table tests of suspended ceilings to simulate the observed damage in the M_s 7.0 Lushan earthquake, China 被引量:14
1
作者 Wang Duozhi Dai Junwu +1 位作者 Qu Zhe Ning Xiaoqing 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2016年第2期239-249,共11页
Severe damage to suspended ceilings of metal grids and lay-in panels was observed in public buildings during the 2013 M7.0 Lushan earthquake in China. Over the past several years, suspended ceilings have been widely u... Severe damage to suspended ceilings of metal grids and lay-in panels was observed in public buildings during the 2013 M7.0 Lushan earthquake in China. Over the past several years, suspended ceilings have been widely used practice in public buildings throughout China, including government offices, schools and hospitals. To investigate the damage mechanism of suspended ceilings, a series of three-dimensional shake table tests was conducted to reproduce the observed damage. A full-scale reinforced concrete frame was constructed as the testing frame for the ceiling, which was single-story and infilled with brick masonry walls to represent the local construction of low-rise buildings. In general, the ceiling in the tests exhibited similar damage phenomena as the field observations, such as higher vulnerability of perimeter elements and extensive damage to the cross runners. However, it exhibited lower fragility in terms of peak ground/roof accelerations at the initiation of damage. Further investigations are needed to clarify the reasons for this behavior. 展开更多
关键词 suspended ceiling Lushan earthquake Wenchuan earthquake shake table test wall closure acoustic mineral fiber panel
下载PDF
A novel control strategy for reproducing the floor motions of high-rise buildings by earthquake-simulating shake tables
2
作者 Yuteng Cao Zhe Qu Xiaodong Ji 《Earthquake Research Advances》 CSCD 2024年第1期67-75,共9页
To enable the experimental assessment of the seismic performance of full-scale nonstructural elements with multiple engineering parameters(EDPs),a three-layer testbed named Nonstructural Element Simulator on Shake Tab... To enable the experimental assessment of the seismic performance of full-scale nonstructural elements with multiple engineering parameters(EDPs),a three-layer testbed named Nonstructural Element Simulator on Shake Table(NEST)has been developed.The testbed consists of three consecutive floors of steel structure.The bottom two floors provide a space to accommodate a full-scale room.To fully explore the flexibility of NEST,we propose a novel control strategy to generate the required shake table input time histories for the testbed to track the target floor motions of the buildings of interest with high accuracy.The control strategy contains two parts:an inverse dynamic compensation via simulation of feedback control systems(IDCS)algorithm and an offline iteration procedure based on a refined nonlinear numerical model of the testbed.The key aspects of the control strategy were introduced in this paper.Experimental tests were conducted to simulate the seismic responses of a full-scale office room on the 21^(st)floor of a 42-story high-rise building.The test results show that the proposed control strategy can reproduce the target floor motions of the building of interest with less than 20%errors within the specified frequency range. 展开更多
关键词 shake table test Nonstructural element High-rise building Open-loop IDCS algorithm Off-line iteration
下载PDF
Shake table tests of different seismic isolation systems on a large scale structure subjected to low to moderate earthquakes 被引量:1
3
作者 Nefize Shaban Alp Caner 《Journal of Traffic and Transportation Engineering(English Edition)》 2018年第6期480-490,共11页
Seismic isolation systems designed for extreme events may likely experience low to moderate earthquakes during the design life of the structure rather than the extreme event itself.In new seismic building design codes... Seismic isolation systems designed for extreme events may likely experience low to moderate earthquakes during the design life of the structure rather than the extreme event itself.In new seismic building design codes, low and moderate earthquakes are also mandatory to be investigated in Turkey and some other countries. One of the main reasons is to protect the integrity of non-structural elements or machines during these types of earthquakes. The selection of appropriate seismic isolation is typically decided based on their forcedisplacement characteristics and amount of energy dissipation per cycle. The same energy dissipation per cycle(EDC) can be achieved by high force-low displacement or low force-high displacement response. The focus of this research is given to identify the performance of ball rubber bearing isolation systems compared to different or similar EDC units such as elastomeric bearings and lead rubber bearings through a series of shake table tests performed at low to moderate earthquake levels. Shake table tests were conducted on an almost full scale short span bridge. The tests have revealed that the ball rubber bearings are superior to elastomeric bearings in terms of EDC and can match EDC of LRB. However, although LRB and BRB have the same EDC, BRB is more beneficial to use under low to moderate earthquakes since BRB can transmit less force with larger displacement compared to LRB and LRB can sometimes stay in elastic range with an ineffective EDC as a stiffer elastomeric bearing. 展开更多
关键词 shake table test Seismic isolation Lead rubber bearing (LRB) Ball rubber bearing (BRB) Elastomeric bearing
原文传递
Seismic performance evaluation of water supply pipes installed in a full-scale RC frame structure based on a shaking table test
4
作者 Wu Houli Guo Endong +2 位作者 Wang Jingyi Dai Xin Dai Chenxi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期163-178,共16页
As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scal... As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scale reinforced concrete(RC)frame structure.Different material pipes and different methods for penetrating the reinforced concrete floors are combined to evaluate the difference in seismic performance.Floor response spectra and pipe acceleration amplification factors based on test data are discussed and compared with code provisions.A seismic fragility study of displacement demand is conducted based on numerical simulation.The acceleration response and displacement response of different combinations are compared.The results show that the combination of different pipe materials and different passing-through methods can cause obvious differences in the seismic response of indoor riser pipes. 展开更多
关键词 water supply pipe different materials shaking table test amplification factor seismic fragility
下载PDF
Shake table test of soil-pile groups-bridge structure interaction in liquefiable ground 被引量:15
5
作者 Tang Liang Ling Xianzhang +2 位作者 Xu Pengju Gao Xia Wang Dongsheng 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第1期39-50,共12页
This paper describes a shake table test study on the seismic response of low-cap pile groups and a bridge structure in liquefiable ground. The soil profile, contained in a large-scale laminar shear box, consisted of a... This paper describes a shake table test study on the seismic response of low-cap pile groups and a bridge structure in liquefiable ground. The soil profile, contained in a large-scale laminar shear box, consisted of a horizontally saturated sand layer overlaid with a silty clay layer, with the simulated low-cap pile groups embedded. The container was excited in three E1 Centro earthquake events of different levels. Test results indicate that excessive pore pressure (EPP) during slight shaking only slightly accumulated, and the accumulation mainly occurred during strong shaking. The EPP was gradually enhanced as the amplitude and duration of the input acceleration increased. The acceleration response of the sand was remarkably influenced by soil liquefaction. As soil liquefaction occurred, the peak sand displacement gradually lagged behind the input acceleration; meanwhile, the sand displacement exhibited an increasing effect on the bending moment of the pile, and acceleration responses of the pile and the sand layer gradually changed from decreasing to increasing in the vertical direction from the bottom to the top. A jump variation of the bending moment on the pile was observed near the soil interface in all three input earthquake events. It is thought that the shake table tests could provide the groundwork for further seismic performance studies of low-cap pile groups used in bridges located on liquefiable groun. 展开更多
关键词 liquefiable ground seismic soil-pile-structure interaction pile groups of bridge shake table test
下载PDF
Shaking table tests and dynamic analyses of masonry wall buildings with frame-shear walls at lower stories 被引量:4
6
作者 Xiong Lihong David Xiong +1 位作者 Wu Ruifeng Xia Jingqian 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2008年第3期271-283,共13页
This paper describes shaking table tests of three eight-story building models: all are masonry structures in the upper stories, with or without frame-shear walls of one- or two- stories at the bottom. The test result... This paper describes shaking table tests of three eight-story building models: all are masonry structures in the upper stories, with or without frame-shear walls of one- or two- stories at the bottom. The test results of damage characteristics and seismic responses are provided and compared. Then, nonlinear response analyses are conducted to examine the reliability of the dynamic analysis. Finally, many nonlinear response analyses are performed and it is concluded that for relatively hard sites under a certain lateral stiffness ratio (i.e., the ratio of the stiffness of the lowest upper masonry story to that of the frame- shear wall story), the masonry structure with one-story frame-shear wall at the bottom performs better than a structure built entirely of masonry, and a masonry structure with frame-shear wall of two stories performs better than with one-story frame- shear wall. In relatively soft soil conditions, all three structures have similar performane. In addition, some suggestions that could be helpful for design of masonry structures with ground story of frame-shear wall structure in seismic intensity region VII, such as the appropriate lateral stiffness ratio, shear force increase factor of the frame-shear wall story, and permissible maximum height of the building, are proposed. 展开更多
关键词 masonry structure soft story seismic performance shaking table test nonlinear time history analysis
下载PDF
A shake table investigation of dynamic behavior of pile supported bridges in liquefiable soil deposits 被引量:3
7
作者 Piyush Mohanty Xu Dan +1 位作者 Suryakant Biswal Subhamoy Bhattacharya 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2021年第1期1-24,共24页
Bridges are a part of vital infrastructure,which should operate even after a disaster to keep emergency services running.There have been numerous bridge failures during major past earthquakes due to liquefaction.Among... Bridges are a part of vital infrastructure,which should operate even after a disaster to keep emergency services running.There have been numerous bridge failures during major past earthquakes due to liquefaction.Among other categories of failures,mid span collapse(without the failure of abutments)of pile supported bridges founded in liquefiable deposits are still observed even in most recent earthquakes.This mechanism of collapse is attributed to the effects related to the differential elongation of natural period of the individual piers during liquefaction.A shake table investigation has been carried out in this study to verify mechanisms behind midspan collapse of pile supported bridges in liquefiable deposits.In this investigation,a typical pile supported bridge is scaled down,and its foundations pass through the liquefiable loose sandy soil and rest in a dense gravel layer.White noise motions of increasing acceleration magnitude have been applied to initiate progressive liquefaction and to characterize the dynamic features of the bridge.It has been found that as the liquefaction of the soil sets in,the natural frequency of individual bridge support is reduced,with the highest reduction occurring near the central spans.As a result,there is differential lateral displacement and bending moment demand on the piles.It has also been observed that for the central pile,the maximum bending moment in the pile will occur at a higher elevation,as compared to that of the interface of soils of varied stiffness,unlike the abutment piles.The practical implications of this research are also highlighted. 展开更多
关键词 BRIDGES midspan failure LIQUEFACTION bridge collapse EARTHQUAKE PILE shake table test natural frequency
下载PDF
Shake table testing of a multi-tower connected hybrid structure 被引量:2
8
作者 Zhou Ying Lu Xilin +1 位作者 Lu Wensheng He Zhijun 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2009年第1期47-59,共13页
Many single-tower reinforced concrete core wall-steel frame (RCC-SF) buildings have been built in China, but there are no buildings of different-height multi-tower hybrid system. A multi-tower RCC-SF tall building w... Many single-tower reinforced concrete core wall-steel frame (RCC-SF) buildings have been built in China, but there are no buildings of different-height multi-tower hybrid system. A multi-tower RCC-SF tall building was thus studied because of its structural complexity and irregularity. First, a 1/15 scaled model structure was designed and tested on the shake table under minor, moderate, and major earthquake levels. Then, the dynamic responses of the model structure were interpreted to those of the prototype structure according to the similitude theory. Experimental results demonstrate that, despite the complexity of the structure, the lateral deformation bends as the "bending type" and the RC core walls contribute more than the steel frames to resist seismic loads. The maximum inter-story drift of the complex building under minor earthquakes is slightly beyond the elastic limitation specified in the Chinese code, and meets code requirements under major earthquakes. From the test results some suggestions are provided that could contribute favorable effect on the seismic behavior and the displacement of the building. 展开更多
关键词 complex building hybrid structure scaled model shake table testing seismic performance
下载PDF
Shaking Table Tests of Four-Bucket Jacket Foundation for Offshore Wind Turbines 被引量:2
9
作者 DING Hong-yan LI Jing-yi +2 位作者 LE Cong-huan PAN Chen ZHANG Pu-yang 《China Ocean Engineering》 SCIE EI CSCD 2022年第6期849-858,共10页
As the offshore wind turbine foundation,the four-bucket jacket foundation has a large stiffness and the structure is difficult to be damaged under seismic load.Nevertheless,the saturated subsoil of the four-bucket jac... As the offshore wind turbine foundation,the four-bucket jacket foundation has a large stiffness and the structure is difficult to be damaged under seismic load.Nevertheless,the saturated subsoil of the four-bucket jacket foundation tends to be liquefied under earthquake,which greatly affects the safety of offshore wind turbine.Therefore,the seismic performance of four-bucket jacket foundation is mainly reflected in the anti-liquefaction capacity of foundation soil.In this paper,the liquefaction resistance of sandy soil of four-bucket jacket foundation for offshore wind turbine is studied.The liquefaction and dynamic response of sandy soil foundation of four-bucket jacket foundation under seismic load are obtained by carrying out the shaking table test,and the influence mechanism of four-bucket jacket foundation on the liquefaction resistance of sandy soil foundation is analyzed. 展开更多
关键词 four-bucket jacket foundation sand liquefaction shaking table test seismic response
下载PDF
Shaking Table Tests and Seismic Response of Three-Bucket Jacket Foundations for Offshore Wind Turbines 被引量:1
10
作者 DING Hongyan PAN Chen +2 位作者 ZHANG Puyang WANG Le XU Yunlong 《Journal of Ocean University of China》 SCIE CAS CSCD 2022年第3期719-736,共18页
The seismic response characteristics of three-bucket jacket foundations for offshore wind turbines(OWTs)and the liquefaction of the surrounding soil are particularly important for the development and application of th... The seismic response characteristics of three-bucket jacket foundations for offshore wind turbines(OWTs)and the liquefaction of the surrounding soil are particularly important for the development and application of this type of structure for offshore use.Using the shaking table test and three-dimensional finite element analysis,different magnitudes of simulated earthquake waves were used as inputs to the shaking table to model seismic excitations.The resulting changes in the excess pore water pressure and acceleration response of the soil under horizontal earthquake are compared in this paper.Calculations of the anti-liquefaction shear stress and equivalent shearing stress during the earthquake,determination of the areas prone to liquefaction,and identification of the effect of the three-bucket jacket foundation on the soil liquefaction resistance were conducted by developing a soil-structure finite element model.The development law of the soil’s amplification effect on seismic acceleration and the seismic response of the foundation soil under various magnitude earthquake waves were also discussed.Results indicate that liquefying the soil inside the bucket of the foundation is more difficult than that outside the bucket during the excitation of seismic waves due to the large upper load and the restraint of the surrounding hoop.This finding confirms the advantages of the three-bucket jacket foundations in improving the liquefaction resistance of the soil inside the bucket.However,the confinement has a barely noticeable impact on the nearby soil outside the skirt.The phenomenon of soil liquefaction at the bottom of the skirt occurred earlier than that in other positions during the seismic excitation,and the excess pore water pressure slowly dissipated.The acceleration amplification coefficient of the sand outside the bucket increases with depth,but that of the sand inside the bucket is substantially inhibited in the height range of the bucket foundation.This result proves the inhibition effects of the three-bucket jacket foundations on the seismic responses of soils.The liquefied soil layer has a significant effect in absorbing a certain amount of seismic wave energy and reducing the amplification effect.The numerical simulation results are consistent with the phenomenon and data measured during the shaking table test.The current study also verifies the feasibility of the excess pore water pressure ratio and the anti-liquefaction shear stress method for judging soil liquefaction. 展开更多
关键词 three-bucket jacket foundation seismic response shaking table test liquefaction analysis
下载PDF
Property estimation of free-field sand in 1-g shaking table tests 被引量:1
11
作者 Xu Chengshun Jiang Zhiwei +2 位作者 Du Xiuli Deng Lijun Li Zheng 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第3期591-604,共14页
Experimental data taken from free-field soil in 1-g shaking table tests are valuable for seismic studies on soil-structure interaction.But the available data from medium-to large-scale shaking table tests were not abu... Experimental data taken from free-field soil in 1-g shaking table tests are valuable for seismic studies on soil-structure interaction.But the available data from medium-to large-scale shaking table tests were not abundant enough to cover a large variety of types and conditions of the soil.In the study,1-g shaking table tests of a 3-m-height sand column were conducted to provide seismic experimental data about sand.The sand was directly collected in-situ,with the largest grain diameter being 2 cm and containing a water content of 6.3%.Properties of the sand were estimated under the influence of white noise plus pulse and earthquake motions,including the settlement,the dynamic properties of the sand column,and the three soil layers′shear modulus degradation relationships.The estimated properties were then indirectly verified by means of finite element analysis.Results show that the estimated parameters were effective and could be used in numerical modeling to reproduce approximate seismic responses of the sand column. 展开更多
关键词 1-g shaking table test seismic sand response dynamic soil properties free-field sand
下载PDF
An isolated similarity design method for shaking table tests on reinforced slopes
12
作者 WANG Zhi-jia FAN Gang +1 位作者 CAO Li-cong CHANG Jin-yuan 《Journal of Mountain Science》 SCIE CSCD 2021年第9期2460-2474,共15页
Physical model test is an effective way to unveil the dynamic response of a slope under seismic condition.The similarity design is the key of physical model test.An isolated similarity design method for shaking table ... Physical model test is an effective way to unveil the dynamic response of a slope under seismic condition.The similarity design is the key of physical model test.An isolated similarity design method for shaking table tests was proposed and verified in this work.In this method,the relevant physical quantities were divided into several subsystems and subcharacteristic equations for each subsystem were then established based on the Buckingham similarity theory.Large-scale shaking table tests on a reinforced slope were adopted herein to illustrate the application of the proposed isolated similarity design method.The similarity system for the studied slope was divided into four parts in the process of similarity design.The geometrical dimension L,densityρand gravity g were selected as fundamental quantities for the similarity design,and four subcharacteristic equations were established for each subsystem.The dynamic responses of the recorded acceleration and axis force show that the seismic waves propagate well in the model slope.The proposed isolated similarity design method solves the conflict between the similarity requirement for all relevant physical quantities and the difficulty of test model fabrication to satisfy all similarity relations. 展开更多
关键词 Similarity design Shaking table test SLOPE ACCELERATION Axial force
下载PDF
Dynamic Behavior of Gravity Retaining Walls with Coral Sand Backfill Under Earthquakes:Shaking Table Tests
13
作者 ZHANG Yan-ling WANG Cheng-long +1 位作者 DING Xuan-ming WU Qi 《China Ocean Engineering》 SCIE EI CSCD 2022年第6期839-848,共10页
The retaining walls in coral sand sites are inevitably threatened by earthquakes. A series of shaking table tests were carried out to study the seismic stability of gravity retaining walls with coral sand backfill. Pa... The retaining walls in coral sand sites are inevitably threatened by earthquakes. A series of shaking table tests were carried out to study the seismic stability of gravity retaining walls with coral sand backfill. Parallel tests with quartz sand were performed to compare and discuss the special dynamic properties of coral sand sites. The results show that the acceleration difference between the retaining wall and the coral sand backfill is 76%-92% that of the quartz sand,which corresponds to the larger liquefaction resistance of coral sand compared with the quartz sand. However, the horizontal displacement of the retaining walls with coral sand backfill reaches 79% of its own width under 0.4g vibration intensity. The risk of instability and damage of the retaining walls with coral sand backfill under strong earthquakes needs attention. 展开更多
关键词 coral sand seismic response LIQUEFACTION shaking table test gravity retaining walls
下载PDF
Shaking table test and cumulative deformation evaluation analysis of a tunnel across the hauling sliding surface
14
作者 Lifang Pai Honggang Wu Xu Wang 《Deep Underground Science and Engineering》 2023年第4期371-393,共23页
To explore the cumulative deformation effect of the dynamic response of a tunnel crossing the hauling sliding surface under earthquakes,the shaking table test was conducted in this study.Combined with the numerical ca... To explore the cumulative deformation effect of the dynamic response of a tunnel crossing the hauling sliding surface under earthquakes,the shaking table test was conducted in this study.Combined with the numerical calculations,this study proposed magnification of the Arias intensity(MIa)to characterize the overall local deformation damage of the tunnel lining in terms of the deformation characteristics,frequency domain,and energy.Using the time‐domain analysis method,the plastic effect coefficient(PEC)was proposed to characterize the degree of plastic deformation,and the applicability of the seismic cumulative failure effect(SCFE)was discussed.The results show that the low‐frequency component(f1 and f2≤10 Hz)and the high‐frequency component(f3 and f4>10 Hz)acceleration mainly cause global and local deformation of the tunnel lining.The local deformation caused by the high‐frequency wave has an important effect on the seismic damage of the lining.The physical meaning of PEC is more clearly defined than that of the residual strain,and the SCFE of the tunnel lining can also be defined.The SCFE of the tunnel lining includes the elastic deformation effect stage(<0.15g),the elastic–plastic deformation effect stage(0.15g–0.30g),and the plastic deformation effect stage(0.30g–0.40g).This study can provide valuable theoretical and technical support for the construction of traffic tunnels in high‐intensity earthquake areas. 展开更多
关键词 magnification of Arias intensity plastic effect coefficient seismic action seismic cumulative failure effect shaking table test tunnel engineering
下载PDF
Study on a conical bearing for acceleration-sensitive equipment
15
作者 Pang Hui Xu Wen +1 位作者 Dai Junwu Jiang Tao 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期103-128,共26页
Seismic isolation effectively reduces seismic demands on building structures by isolating the superstructure from ground vibrations during earthquakes.However,isolation strategies give less attention to acceleration-s... Seismic isolation effectively reduces seismic demands on building structures by isolating the superstructure from ground vibrations during earthquakes.However,isolation strategies give less attention to acceleration-sensitive systems or equipment.Meanwhile,as the isolation layer’s displacement grows,the stiffness and frequency of traditional rolling and sliding isolation bearings increases,potentially causing self-centering and resonance concerns.As a result,a new conical pendulum bearing has been selected for acceleration-sensitive equipment to increase self-centering capacity,and additional viscous dampers are incorporated to enhance system damping.Moreover,the theoretical formula for conical pendulum bearings is supplied to analyze the device’s dynamic parameters,and shake table experiments are used to determine the proposed device’s isolation efficiency under various conditions.According to the test results,the newly proposed devices have remarkable isolation performance in terms of minimizing both acceleration and displacement responses.Finally,a numerical model of the isolation system is provided for further research,and the accuracy is demonstrated by the aforementioned experiments. 展开更多
关键词 seismic isolation acceleration-sensitive equipment the conical pendulum bearing shake table tests isolation performance numerical model
下载PDF
Dynamic response and failure process of horizontal-layered fractured structure rock slope under strong earthquake
16
作者 WANG Tong LIU Xianfeng +5 位作者 HOU Zhaoxu XU Jiahang ZHANG Jun YUAN Shengyang JIANG Guanlu HU Jinshan 《Journal of Mountain Science》 SCIE CSCD 2024年第3期882-900,共19页
Rock slope with horizontal-layered fractured structure(HLFS)has high stability in its natural state.However,a strong earthquake can induce rock fissure expansion,ultimately leading to slope failure.In this study,the d... Rock slope with horizontal-layered fractured structure(HLFS)has high stability in its natural state.However,a strong earthquake can induce rock fissure expansion,ultimately leading to slope failure.In this study,the dynamic response,failure mode,and spectral characteristics of rock slope with HLFS under strong earthquake conditions were investigated based on the large-scale shaking table model test.On this basis,multiple sets of numerical calculation models were further established by UDEC discrete element program.Five influencing factors were considered in the parametric study of numerical simulations,including slope height,slope angle,bedding-plane spacing and secondary joint spacing as well as bedrock dip angle.The results showed that the failure process of rock slope with HLFS under earthquake action is mainly divided into four phases,i.e.,the tensile crack of the slope shoulder joints and shear dislocation at the top bedding plane,the extension of vertical joint cracks and increase of shear displacement,the formation of step-through sliding surfaces and the instability,and finally collapse of fractured rock mass.The acceleration response of slopes exhibits elevation amplification effect and surface effect.Numerical simulations indicate that the seismic stability of slopes with HLFS exhibits a negative correlation with slope height and angle,but a positive correlation with bedding-plane spacing,joint spacing,and bedrock dip angle.The results of this study can provide a reference for seismic stability evaluation of weathered rock slopes. 展开更多
关键词 Seismic behavior Horizontal layered Weathered rock slope Shaking table test Failure mode
下载PDF
Seismic effectiveness evaluation and optimized design of tie up method for securing museum collections
17
作者 Wang Meng Yan Yi +3 位作者 Yang Weiguo Liu Pei Ge Jiaqi Ma Botao 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第3期741-763,共23页
To quantify the seismic effectiveness of the most commonly used fishing line tie up method for securing museum collections and optimize fixed strategies for exhibitions,shaking table tests of the seismic systems used ... To quantify the seismic effectiveness of the most commonly used fishing line tie up method for securing museum collections and optimize fixed strategies for exhibitions,shaking table tests of the seismic systems used for typical museum collection replicas have been carried out.The influence of body shape and fixed measure parameters on the seismic responses of replicas and the interaction behavior between replicas and fixed measures have been explored.Based on the results,seismic effectiveness evaluation indexes of the tie up method are proposed.Reasonable suggestions for fixed strategies are given,which provide a basis for the exhibition of delicate museum collections considering the principle of minimizing seismic responses and intervention.The analysis results show that a larger ratio of height of mass center to bottom diameter led to more intense rocking responses.Increasing the initial pretension of fishing lines was conducive to reducing the seismic responses and stress variation of the lines.Through comprehensive consideration of the interaction forces and effective securement,it is recommended to apply 20%of breaking stress as the initial pretension.For specific museum collections that cannot be effectively protected by the independent tie up method,an optimized strategy of a combination of fishing lines and fasteners is recommended. 展开更多
关键词 tie up method museum collections shaking table test seismic effectiveness optimized design
下载PDF
Experimental study on seismic reinforcement of bridge foundation on silty clay landslide with inclined interlayer
18
作者 Lei Da Xiao Hanmo +3 位作者 Ran Jianhua Luo Bin Jiang Guanlu Xue Tianlang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期193-207,共15页
A shaking table test for a bridge foundation reinforced by anti-slide piles on a silty clay landslide model with an inclined interlayer was performed.The deformation characteristics of the bridge foundation piles and ... A shaking table test for a bridge foundation reinforced by anti-slide piles on a silty clay landslide model with an inclined interlayer was performed.The deformation characteristics of the bridge foundation piles and anti-slide piles were analyzed in different loading conditions.The dynamic response law of a silty clay landslide with an inclined interlayer was summarized.The spacing between the rear anti-slide piles and bridge foundation should be reasonably controlled according to the seismic fortification requirements,to avoid the two peaks in the forced deformation of the bridge foundation piles.The“blocking effect”of the bridge foundation piles reduced the deformation of the forward anti-slide piles.The stress-strain response of silty clay was intensified as the vibration wave field appeared on the slope.Since the vibration intensified,the thrust distribution of the landslide underwent a process of shifting from triangle to inverted trapezoid,the difference in the acceleration response between the bearing platform and silty clay landslide tended to decrease,and the spectrum amplitude near the natural vibration frequency increased.The rear anti-slide piles were able to slow down the shear deformation of the soil in front of the piles and avoid excessive acceleration response of the bridge foundation piles. 展开更多
关键词 silty clay landslide inclined interlayer shaking table test anti-slide pile bridge foundation pile
下载PDF
Fundamental Study on Response Properties of Structures Constructed on Lunar Regolith
19
作者 Yuji Miyamoto Takaharu Nakano Toshio Kobayashi 《Open Journal of Earthquake Research》 2024年第1期27-40,共14页
The Artemis Program, for constructing the lunar base, is in progress. How to design and construct architectural and civil engineering structures in the lunar environment has become an important issue. The lunar surfac... The Artemis Program, for constructing the lunar base, is in progress. How to design and construct architectural and civil engineering structures in the lunar environment has become an important issue. The lunar surface is covered with soft sand, called regolith, and it is required to protect lunar bases and structures, as well as internal precision equipment, against vibrational disturbances such as moonquakes and meteorite collisions. Therefore, in this study, the static and cyclic triaxial compression tests of the regolith simulant were conducted. The reference strain and equivalent damping factor of the regolith simulant were smaller compared to sandy soil on Earth. In addition, a shaking table test using model specimens was conducted on the response properties of regolith ground alone and structures set on regolith ground. The buried foundation and pile foundation notably suppressed the horizontal response attributed to the rocking component compared to a direct foundation. 展开更多
关键词 Lunar Development REGOLITH Soil-Structure Interaction Triaxial Compression Test Shaking table Test
下载PDF
Seismic response of underground utility tunnels: shaking table testing and FEM analysis 被引量:35
20
作者 Jiang Luzhen Chen Jun Li Jie 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第4期555-567,共13页
Underground utility tunnels are widely used in urban areas throughout the world for lifeline networks due to their easy maintenance and environmental protection capabilities. However, knowledge about their seismic per... Underground utility tunnels are widely used in urban areas throughout the world for lifeline networks due to their easy maintenance and environmental protection capabilities. However, knowledge about their seismic performance is still quite limited and seismic design procedures are not included in current design codes. This paper describes a series of shaking table tests the authors performed on a scaled utility tunnel model to explore its performance under earthquake excitation. Details of the experimental setup are first presented focusing on aspects such as the design of the soil container, scaled structural model, sensor array arrangement and test procedure. The main observations from the test program, including structural response, soil response, soil-structure interaction and earth pressure, are summarized and discussed. Further, a finite element model (FEM) of the test utility tunnel is established where the nonlinear soil properties are modeled by the Drucker- Prager constitutive model; the master-slave surface mechanism is employed to simulate the soil-structure dynamic interaction; and the confining effect of the laminar shear box to soil is considered by proper boundary modeling. The results from the numerical model are compared with experiment measurements in terms of displacement, acceleration and amplification factor of the structural model and the soil. The comparison shows that the numerical results match the experimental measurements quite well. The validated numerical model can be adopted for further analysis. 展开更多
关键词 lifeline system utility tunnel shaking table test finite element method soil-structure interaction
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部