期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Numerical simulations of shake-table experiment for dynamic soil-pile-structure interaction in liquefi able soils 被引量:15
1
作者 Tang Liang Baydaa Hussain Maula +1 位作者 Ling Xianzhang Su Lei 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2014年第1期171-180,共10页
A shake-table experiment on pile foundations in liquefi able soils composed of liquefi able sand and overlying soft clay is studied. A three-dimensional(3D) effective stress fi nite element(FE) analysis is employed to... A shake-table experiment on pile foundations in liquefi able soils composed of liquefi able sand and overlying soft clay is studied. A three-dimensional(3D) effective stress fi nite element(FE) analysis is employed to simulate the experiment. A recently developed multi-surface elasto-plastic constitutive model and a fully coupled dynamic inelastic FE formulation(u-p) are used to model the liquefaction behavior of the sand. The soil domains are discretized using a solid-fl uid fully coupled(u-p) 20-8 noded brick element. The pile is simulated using beam-column elements. Upon careful calibration, very good agreement is obtained between the computed and the measured dynamic behavior of the ground and the pile. A parametric analysis is also conducted on the model to investigate the effect of pile-pinning, pile diameter, pile stiffness, ground inclination angle, superstructure mass and pile head restraints on the ground improvement. It is found that the pile foundation has a noticeable pinning effect that reduces the lateral soil displacement. It is observed that a larger pile diameter and fi xed pile head restraints contribute to decreasing the lateral pile deformation; however, a higher ground inclination angle tends to increase the lateral pile head displacements and pile stiffness, and superstructure mass seems to effectively infl uence the lateral pile displacements. 展开更多
关键词 LIQUEFACTION pile pinning soil improvement pile deformation EARTHQUAKE nonlinear fi nite element method shake-table experiment
下载PDF
Shake-table testing of a self-centering precast reinforced concrete frame with shear walls 被引量:10
2
作者 Lu Xilin Yang Boya Zhao Bin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第2期221-233,共13页
The seismic performance of a self-centering precast reinforced concrete (RC) frame with shear walls was investigated in this paper. The lateral force resistance was provided by self-centering precast RC shear walls ... The seismic performance of a self-centering precast reinforced concrete (RC) frame with shear walls was investigated in this paper. The lateral force resistance was provided by self-centering precast RC shear walls (SPCW), which utilize a combination ofunbonded prestressed post-tensioned (PT) tendons and mild steel reinforcing bars for flexural resistance across base joints. The structures concentrated deformations at the bottom joints and the unbonded PT tendons provided the self-centering restoring force. A 1/3-scale model of a five-story self-centering RC frame with shear walls was designed and tested on a shake-table under a series of bi-directional earthquake excitations with increasing intensity. The acceleration response, roof displacement, inter-story drifts, residual drifts, shear force ratios, hysteresis curves, and local behaviour of the test specimen were analysed and evaluated. The results demonstrated that seismic performance of the test specimen was satisfactory in the plane of the shear wall; however, the structure sustained inter-story drift levels up to 2.45%. Negligible residual drifts were recorded after all applied earthquake excitations. Based on the shake-table test results, it is feasible to apply and popularize a self-centering precast RC frame with shear walls as a structural system in seismic regions. 展开更多
关键词 SELF-CENTERING shake-table test RC frame with shear walls PRECAST unbonded post-tensioning seismicperformance
下载PDF
Response of a pile group behind quay wall to liquefaction-induced lateral spreading:a shake-table investigation 被引量:6
3
作者 Tang Liang Zhang Xiaoyu +2 位作者 Ling Xianzhang Su Lei Liu Chunhui 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2014年第4期741-749,共9页
The response of pile foundations near a quay wall under liquefaction-induced lateral spreading remains a complex problem. This study presents the results of a shake-table test on a 2×2 pile group behind a sheet-p... The response of pile foundations near a quay wall under liquefaction-induced lateral spreading remains a complex problem. This study presents the results of a shake-table test on a 2×2 pile group behind a sheet-pile quay wall that was subjected to lateral spreading. The quay wall was employed to trigger liquefaction-induced large lateral ground deformation. The discussions focus on the behavior of the pile and the soil and on the bending moment distributions within the group pile and the restoring force characteristics at the superstructure. Overall, the piles exhibited apparent pinning effects that reduced soil deformation. In addition, the rear-row piles near the quay wall experienced larger bending moments than did the front-row piles, indicating significant pile group effects. The tests showed that lateral spreading could be a primary cause of larger monotonic deformations and bending moments. It can also be concluded that the monotonic bending moments were significantly decreased due to the presence of slow soil flow. The stiffness at the superstructure was reduced because of accumulated excess pore pressure before liquefaction, and it was recovered during lateral spreading. The present study further enhances current understanding of the behavior of low-cap pile foundations under lateral spreading. 展开更多
关键词 lateral spreading LIQUEFACTION pile group BEHAVIOR shake-table experiment
下载PDF
The boundary conditions for simulations of a shake-table experiment on the seismic response of 3D slope 被引量:5
4
作者 Tang Liang Cong Shengyi +1 位作者 Ling Xianzhang Ju Nengpan 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2017年第1期23-32,共10页
Boundary conditions can significantly affect a slope's behavior under strong earthquakes. To evaluate the importance of boundary conditions for finite element (FE) simulations of a shake-table experiment on the slo... Boundary conditions can significantly affect a slope's behavior under strong earthquakes. To evaluate the importance of boundary conditions for finite element (FE) simulations of a shake-table experiment on the slope response, a validated three-dimensional (3D) nonlinear FE model is presented, and the numerical and experimental results are compared. For that purpose, the robust graphical user-interface "SlopeSAR", based on the open-source computational platform OpenSees, is employed, which simplifies the effort-intensive pre- and post-processing phases. The mesh resolution effect is also addressed. A parametric study is performed to evaluate the influence of boundary conditions on the FE model involving the boundary extent and three types of boundary conditions at the end faces. Generally, variations in the boundary extent produce inconsistent slope deformations. For the two end faces, fixing the y-direction displacement is not appropriate to simulate the shake-table experiment, in which the end walls are rigid and rough. In addition, the influence of the length of the 3D slope's top face and the width of the slope play an important role in the difference between two types of boundary conditions at the end faces (fixing the y-direction displacement and fixing the (y, z) direction displacement). Overall, this study highlights that the assessment of a comparison between a simulation and an experimental result should be performed with due consideration to the effect of the boundary conditions. 展开更多
关键词 boundary condition dynamic response soil slope nonlinear finite element analysis shake-table experimentearthquake
下载PDF
Evaluation of seismic residual capacity ratio for reinforced concrete structures
5
作者 Alex V.Shegay Kota Miura +3 位作者 Kisho Fujita Yu Tabata Masaki Maeda Matsutaro Seki 《Resilient Cities and Structures》 2023年第1期28-45,共18页
Use of indices that quantify the seismic residual capacity of buildings damaged in earthquakes is one way to draw judgements on the building’s safety and possibility of future use.In Japanese damage assessment guidel... Use of indices that quantify the seismic residual capacity of buildings damaged in earthquakes is one way to draw judgements on the building’s safety and possibility of future use.In Japanese damage assessment guidelines,several approximate calculation methods exist to evaluate the residual capacity of buildings based on visually observed damage and simplifying assumptions on the nature of the building’s response mechanism and member capacities.While these methods provide a useful residual capacity ratio that enables a‘relative’comparison be-tween buildings,the exact relationship to a physically meaningful residual capacity is unclear.The aim of this study is to benchmark the‘approximations’of residual capacity.To do so,a shake-table test was conducted on a 14 scale 4-storey RC structure and a residual capacity evaluation was undertaken based on observed damage states.With the help of a numerical model,a benchmark residual capacity at each of the damage states is determined and compared to the approximate residual capacity calculation results via guidelines.It was found that approx-imate methods are generally accurate prior to yield but can become overly conservative post-yield.Simplifying assumptions of equal member deformation capacity used in the residual capacity ratio calculation was found to be suitable given constraints of rapid field evaluations. 展开更多
关键词 Seismic residual capacity ratio Reinforced concrete Earthquake engineering shake-table test Damage evaluation Numerical modeling
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部