期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Formation,evolution,reconstruction of black shales and their influence on shale oil and gas resource
1
作者 Shi-zhen Li Qiu-chen Xu +11 位作者 Mu Liu Guo-heng Liu Yi-fan Li Wen-yang Wang Xiao-guang Yang Wei-bin Liu Yan-fei An Peng Sun Tao Liu Jiang-hui Ding Qian-chao Li Chao-gang Fang 《China Geology》 CAS CSCD 2024年第3期551-585,共35页
Black shales are important products of material cycling and energy exchange among the lithosphere,atmosphere,hydrosphere,and biosphere.They are widely distributed throughout geological history and provide essential en... Black shales are important products of material cycling and energy exchange among the lithosphere,atmosphere,hydrosphere,and biosphere.They are widely distributed throughout geological history and provide essential energy and mineral resources for the development of human society.They also record the evolution process of the earth and improve the understanding of the earth.This review focuses on the diagenesis and formation mechanisms of black shales sedimentation,composition,evolution,and reconstruction,which have had a significant impact on the formation and enrichment of shale oil and gas.In terms of sedimentary environment,black shales can be classified into three types:Marine,terrestrial,and marine-terrestrial transitional facies.The formation processes include mechanisms such as eolian input,hypopycnal flow,gravity-driven and offshore bottom currents.From a geological perspective,the formation of black shales is often closely related to global or regional major geological events.The enrichment of organic matter is generally the result of the interaction and coupling of several factors such as primary productivity,water redox condition,and sedimentation rate.In terms of evolution,black shales have undergone diagenetic evolution of inorganic minerals,thermal evolution of organic matter and hydrocarbon generation,interactions between organic matter and inorganic minerals,and pore evolution.In terms of reconstruction,the effects of fold deformation,uplift and erosion,and fracturing have changed the stress state of black shale reservoirs,thereby having a significant impact on the pore structure.Fluid activity promotes the formation of veins,and have changed the material composition,stress structure,and reservoir properties of black shales.Regarding resource effects,the deposition of black shales is fundamental for shale oil and gas resources,the evolution of black shales promotes the shale oil and gas formation and storage,and the reconstruction of black shales would have caused the heterogeneous distribution of oil and gas in shales.Exploring the formation mechanisms and interactions of black shales at different scales is a key to in-depth research on shale formation and evolution,as well as the key to revealing the mechanism controlling shale oil and gas accumulation.The present records can reveal how these processes worked in geological history,and improve our understanding of the coupling mechanisms among regional geological events,black shales evolution,and shale oil and gas formation and enrichment. 展开更多
关键词 Black shales shale oil and gas Resource effects Sedimentary environment Sedimentary process Organic matter accumulation Diagenetic evolution Thermal evolution Organic matter and inorganic minerals Tectonic reconstruction oil and gas exploration engineering VEINS Fluid activity
下载PDF
Progress and prospects of horizontal well fracturing technology for shale oil and gas reservoirs 被引量:4
2
作者 LEI Qun XU Yun +10 位作者 CAI Bo GUAN Baoshan WANG Xin BI Guoqiang LI Hui LI Shuai DING Bin FU Haifeng TONG Zheng LI Tao ZHANG Haoyu 《Petroleum Exploration and Development》 CSCD 2022年第1期191-199,共9页
By systematically summarizing horizontal well fracturing technology abroad for shale oil and gas reservoirs since the “13th Five-Year Plan”, this article elaborates new horizontal well fracturing features in 3D deve... By systematically summarizing horizontal well fracturing technology abroad for shale oil and gas reservoirs since the “13th Five-Year Plan”, this article elaborates new horizontal well fracturing features in 3D development of stacked shale reservoirs, small well spacing and dense well pattern, horizontal well re-fracturing, fracturing parameters optimization and cost control. In light of requirements on horizontal well fracturing technology in China, we have summarized the technological progress in simulation of multi-fracture propagation, horizontal well frac-design, electric-drive fracturing equipment, soluble tools and low-cost downhole materials and factory-like operation. On this basis, combined with the demand analysis of horizontal well fracturing technology in the “14th Five-Year Plan” for unconventional shale oil and gas, we suggest strengthening the research and development in the following 7 aspects:(1) geology-engineering integration;(2) basic theory and design optimization of fracturing for shale oil and gas reservoirs;(3) development of high-power electric-drive fracturing equipment;(4) fracturing tool and supporting equipment for long horizontal section;(5) horizontal well flexible-sidetracking drilling technology for tapping remaining oil;(6) post-frac workover technology for long horizontal well;(7) intelligent fracturing technology. 展开更多
关键词 shale oil and gas horizontal well fracturing fracturing equipment fracturing parameter three-dimensional development intelligent fracturing
下载PDF
Shale oil and gas exploitation in China:Technical comparison with US and development suggestions 被引量:3
3
作者 LEI Qun WENG Dingwei +5 位作者 GUAN Baoshan SHI Junfeng CAI Bo HE Chunming SUN Qiang HUANG Rui 《Petroleum Exploration and Development》 SCIE 2023年第4期944-954,共11页
The shale oil and gas exploitation in China is technically benchmarked with the United States in terms of development philosophy,reservoir stimulation treatment,fracturing parameters,fracturing equipment and materials... The shale oil and gas exploitation in China is technically benchmarked with the United States in terms of development philosophy,reservoir stimulation treatment,fracturing parameters,fracturing equipment and materials,oil/gas production technology,and data/achievements sharing.It is recognized that the shale oil and gas exploitation in China is weak in seven aspects:understanding of flow regimes,producing of oil/gas reserves,monitoring of complex fractures,repeated stimulation technology,oil/gas production technology,casing deformation prevention technology,and wellbore maintenance technology.Combined with the geological and engineering factors of shale oil and gas in China,the development suggestions of four projects are proposed from the macro-and micro-perspective,namely,basic innovation project,exploitation technology project,oil/gas production stabilization project,and supporting efficiency-improvement project,so as to promote the rapid,efficient,stable,green and extensive development of shale oil and gas industry chain and innovation chain and ultimately achieve the goal of“oil volume stabilizing and gas volume increasing”. 展开更多
关键词 shale oil and gas reservoir stimulation oil/gas production technology oil/gas development philosophy reservoir stimulation treatment flow regime
下载PDF
Key geological factors controlling the estimated ultimate recovery of shale oil and gas: A case study of the Eagle Ford shale, Gulf Coast Basin, USA 被引量:1
4
作者 HOU Lianhua YU Zhichao +6 位作者 LUO Xia LIN Senhu ZHAO Zhongying YANG Zhi WU Songtao CUI Jingwei ZHANG Lijun 《Petroleum Exploration and Development》 CSCD 2021年第3期762-774,共13页
Based on 991 groups of analysis data of shale samples from the Lower Member of the Cretaceous Eagle Ford Formation of 1317 production wells and 72 systematic coring wells in the U.S. Gulf Basin, the estimated ultimate... Based on 991 groups of analysis data of shale samples from the Lower Member of the Cretaceous Eagle Ford Formation of 1317 production wells and 72 systematic coring wells in the U.S. Gulf Basin, the estimated ultimate recovery(EUR) of shale oil and gas of the wells are predicted by using two classical EUR estimation models, and the average values predicted excluding the effect of engineering factors are taken as the final EUR. Key geological factors controlling EUR of shale oil and gas are fully investigated. The reservoir capacity, resources, flow capacity and fracability are the four key geological parameters controlling EUR. The storage capacity of shale oil and gas is directly controlled by total porosity and hydrocarbon-bearing porosity, and indirectly controlled by total organic carbon(TOC) and vitrinite reflectance(Ro). The resources of shale oil and gas are controlled by hydrocarbon-bearing porosity and effective shale thickness etc. The flow capacity of shale oil and gas is controlled by effective permeability, crude oil density, gas-oil ratio, condensate oil-gas ratio, formation pressure gradient, and Ro. The fracability of shale is directly controlled by brittleness index, and indirectly controlled by clay content in volume. EUR of shale oil and gas is controlled by six geological parameters: it is positively correlated with effective shale thickness, TOC and fracture porosity, negatively correlated with clay content in volume, and increases firstly and then decreases with the rise of Ro and formation pressure gradient. Under the present upper limit of horizontal well fracturing effective thickness of 65 m and the lower limit of EUR of 3×10^(4) m^(3), when TOC<2.3%, or Ro<0.85%, or clay content in volume larger than 25%, and fractures and micro-fractures aren’t developed, favorable areas of shale oil and gas hardly occur. 展开更多
关键词 shale oil and gas sweet spot EUR TOC vitrinite reflectance effective shale thickness clay content in volume formation pressure coefficient fracture porosity Lower Member of Eagle Ford Formation
下载PDF
“Exploring petroleum inside source kitchen”: Shale oil and gas in Sichuan Basin 被引量:11
5
作者 Caineng ZOU Zhi YANG +6 位作者 Shasha SUN Qun ZHAO Wenhua BAI Honglin LIU Songqi PAN Songtao WU Yilin YUAN 《Science China Earth Sciences》 SCIE EI CAS CSCD 2020年第7期934-953,共20页
The Sichuan Basin is rich in shale oil and gas resources,with favorable geological conditions that the other shale reservoirs in China cannot match.Thus,the basin is an ideal option for fully"exploring petroleum ... The Sichuan Basin is rich in shale oil and gas resources,with favorable geological conditions that the other shale reservoirs in China cannot match.Thus,the basin is an ideal option for fully"exploring petroleum inside source kitchen"with respect to onshore shale oil and gas in China.This paper analyzes the characteristics of shale oil and gas resources in the United States and China,and points out that maturity plays an important role in controlling shale oil and gas composition.US shale oil and gas exhibit high proportions of light hydrocarbon and wet gas,whereas Chinese marine and transitional shale gas is mainly dry gas and continental shale oil is generally heavy.A comprehensive geological study of shale oil and gas in the Sichuan Basin reveals findings with respect to the following three aspects.First,there are multiple sets of organic-rich shale reservoirs of three types in the basin,such as the Cambrian Qiongzhusi Formation and Ordovician Wufeng Formation-Silurian Longmaxi Formation marine shale,Permian Longtan Formation transitional shale,Triassic Xujiahe Formation lake-swamp shale,and Jurassic lacustrine shale.Marine shale gas enrichment is mainly controlled by four elements:Deep-water shelf facies,moderate thermal evolution,calcium-rich and silicon-rich rock association,and closed roof/floor.Second,the"sweet section"is generally characterized by high total organic carbon,high gas content,large porosity,high brittle minerals content,high formation pressure,and the presence of lamellation/bedding and natural microfractures.Moreover,the"sweet area"is generally characterized by very thick organic-rich shale,moderate thermal evolution,good preservation conditions,and shallow burial depth,which are exemplified by the shale oil and gas in the Wufeng-Longmaxi Formation,Longtan Formation,and Daanzhai Member of the Ziliujing Formation.Third,the marine,transitional,and continental shale oil and gas resources in the Sichuan Basin account for 50%,25%,and 30%of the respective types of shale oil and gas geological resources in China,with great potential to become the cradle of the shale oil and gas industrial revolution in China.Following the"Conventional Daqing-Oil"(i.e.,the Daqing oilfield in the Songliao Basin)and the"Western Daqing-Oil&Gas"(i.e.,the Changqing oilfield in the Ordos Basin),the Southwest oil and gas field in the Sichuan Basin is expected to be built into a"Sichuan-Chongqing Daqing-Gas"in China. 展开更多
关键词 shale oil shale gas Marine facies Continental facies Transitional facies Resource potential Sweet area Sweet section Source rock oil and gas shale oil and gas revolution "Sichuan-Chongqing Daqing-gas"
原文传递
Key technologies, engineering management and important suggestions of shale oil/gas development: Case study of a Duvernay shale project in Western Canada Sedimentary Basin 被引量:1
6
作者 LI Guoxin LUO Kai SHI Deqin 《Petroleum Exploration and Development》 2020年第4期791-802,共12页
The Duvernay project in Canada was taken as an example to summarize the advanced technology and engineering management model of shale oil and gas development in North America.Preliminary suggestions were put forward t... The Duvernay project in Canada was taken as an example to summarize the advanced technology and engineering management model of shale oil and gas development in North America.Preliminary suggestions were put forward to accelerate the commercial development of domestic continental shale oil and gas.The advanced technologies,valuable knowledge and rich experience were introduced,including the evaluation of geological target area of the project,rapid long horizontal drilling and completion,high-intensity fracturing,and well spacing optimization.In particular,the concept and connotation of the full-life cycle management of North American unconventional resource projects were analyzed.Its emphasis on early evaluation and risk management,and a highly competitive market environment have played an important role in promoting technological innovation and management innovation.In addition,the low-cost sharing system of industry-wide knowledge and experience and the management mode were applied.These management approaches are of great significance for reference in accelerating the exploration and development of unconventional resources in China.China possesses abundant shale oil and gas resources,which are an important replacement to guarantee the national oil and gas energy supply.However,due to the late start and special geological characteristics and engineering difficulties in China,there is a large gap in technology level and management mode compared with North America.According to the advanced experience and enlightenment of the shale oil and gas development in North America,a preliminary proposal to accelerate the development of shale oil and gas in China was made. 展开更多
关键词 shale oil and gas long horizontal well high-intensity hydraulic fracturing full-life cycle management large scale exploitation
下载PDF
Formation damage mechanism and control strategy of the compound function of drilling fluid and fracturing fluid in shale reservoirs
7
作者 SUN Jinsheng XU Chengyuan +6 位作者 KANG Yili JING Haoran ZHANG Jie YANG Bin YOU Lijun ZHANG Hanshi LONG Yifu 《Petroleum Exploration and Development》 SCIE 2024年第2期430-439,共10页
For the analysis of the formation damage caused by the compound function of drilling fluid and fracturing fluid,the prediction method for dynamic invasion depth of drilling fluid is developed considering the fracture ... For the analysis of the formation damage caused by the compound function of drilling fluid and fracturing fluid,the prediction method for dynamic invasion depth of drilling fluid is developed considering the fracture extension due to shale minerals erosion by oil-based drilling fluid.With the evaluation for the damage of natural and hydraulic fractures caused by mechanical properties weakening of shale fracture surface,fracture closure and rock powder blocking,the formation damage pattern is proposed with consideration of the compound effect of drilling fluid and fracturing fluid.The formation damage mechanism during drilling and completion process in shale reservoir is revealed,and the protection measures are raised.The drilling fluid can deeply invade into the shale formation through natural and induced fractures,erode shale minerals and weaken the mechanical properties of shale during the drilling process.In the process of hydraulic fracturing,the compound effect of drilling fluid and fracturing fluid further weakens the mechanical properties of shale,results in fracture closure and rock powder shedding,and thus induces stress-sensitive damage and solid blocking damage of natural/hydraulic fractures.The damage can yield significant conductivity decrease of fractures,and restrict the high and stable production of shale oil and gas wells.The measures of anti-collapse and anti-blocking to accelerate the drilling of reservoir section,forming chemical membrane to prevent the weakening of the mechanical properties of shale fracture surface,strengthening the plugging of shale fracture and reducing the invasion range of drilling fluid,optimizing fracturing fluid system to protect fracture conductivity are put forward for reservoir protection. 展开更多
关键词 shale oil and gas drilling fluid fracturing fluid stress-sensitive solid blocking formation damage reservoir protection
下载PDF
Nanoscale mechanical property variations concerning mineral composition and contact of marine shale
8
作者 Yong Li Jianqi Chen +2 位作者 Derek Elsworth Zhejun Pan Xiaotian Ma 《Geoscience Frontiers》 SCIE CAS CSCD 2022年第4期165-180,共16页
Mechanical properties of shales are key parameters influencing hydrocarbon production – impacting borehole stability, hydraulic fracture extension and microscale variations in in situ stress. We use Ordovician shale(... Mechanical properties of shales are key parameters influencing hydrocarbon production – impacting borehole stability, hydraulic fracture extension and microscale variations in in situ stress. We use Ordovician shale(Sichuan Basin, China) as a type-example to characterize variations in mineral particle properties at microscale including particle morphology, form of contact and spatial distribution via mineral liberation analysis(MLA) and scanning electron microscopy(SEM). Deformation-based constitutive models are then built using finite element methods to define the impact of various architectures of fracture and mineral distributions at nanometer scale on the deformation characteristics at macroscale.Relative compositions of siliceous, calcareous and clay mineral particles are shown to be the key factors influencing brittleness. Shales with similar mineral composition show a spectrum of equivalent medium mechanical properties due to differing particle morphology and mineral heterogeneity. The predominance of small particles and/or point-point contacts are conducive to brittle failure, in general, and especially so when quartz-rich. Fracture morphology, length and extent of filling all influence shale deformability. High aspect-ratio fractures concentrate stress at fracture tips and are conducive to extension, as when part-filled by carbonate minerals. As fracture spacing increases, stress transfer between adjacent fractures weakens, stress concentrations are amplified and fracture extension is favored. The higher the fractal dimension of the fracture and heterogeneity of the host the more pervasive the fractures. Moreover, when fractures extend, their potential for intersection and interconnection contributes to a reduction in strength and the promotion of brittle failure. Thus, these results provide important theoretical insights into the role of heterogeneity on the deformability and strength of shale reservoirs with practical implications for their stimulation and in the recovery of hydrocarbons from them. 展开更多
关键词 shale oil and gas shale lithofacies Mineral composition Multiscale mechanical property Nanoscale mechanics Finite-element simulation
下载PDF
Multi-source genesis of continental carbonate-rich fine-grained sedimentary rocks and hydrocarbon sweet spots
9
作者 JIANG Zaixing KONG Xiangxin +4 位作者 YANG Yepeng ZHANG Jianguo ZHANG Yuanfu WANG Li YUAN Xiaodong 《Petroleum Exploration and Development》 CSCD 2021年第1期30-42,共13页
This paper systematically discusses the multiple source characteristics and formation mechanisms of carbonate-rich fine-grained sedimentary rocks through the analysis of material source and rock formation.The hydrocar... This paper systematically discusses the multiple source characteristics and formation mechanisms of carbonate-rich fine-grained sedimentary rocks through the analysis of material source and rock formation.The hydrocarbon accumulation characteristics of carbonate-rich fine-grained sedimentary rocks are also summarized.The results show that the main reason for the enrichment of fine-grained carbonate materials in rift lake basins was the supply of multiple material sources,including terrestrial material input,formation of intrabasinal authigenic carbonate,volcanic-hydrothermal material feeding and mixed source.The development of carbonate bedrock in the provenance area controlled the filling scale of carbonate materials in rift lake basins.The volcanic-hydrothermal activity might provide an alkaline fluid to the lake basins to strengthen the material supply for the formation of carbonate crystals.Authigenic carbonate crystals induced by biological processes were the main source of long-term accumulation of fine-grained carbonate materials in the lake basins.Carbonate-rich fine-grained sedimentary rocks with multiple features were formed through the interaction of physical,biochemical and chemical processes during the deposition and post-deposition stages.The source and sedimentary origin of the fine-grained carbonate rock controlled the hydrocarbon accumulation in it.In the multi-source system,the types of"sweet spots"of continental shale oil and gas include endogenous type,terrigenous type,volcanic-hydrothermal type and mixed source type. 展开更多
关键词 carbonate-rich fine-grained sedimentary rocks rift lake basins multiple sources hydrocarbon accumulation sweet spot of continental shale oil and gas
下载PDF
America's Journey to Energy Independence and Its Revelation on China's Energy Supply Security
10
作者 Hou Mingyang 《China Oil & Gas》 CAS 2015年第3期29-33,共5页
Ever since 2005, the US' shale oil and gas production growth and effective adjustment of domestic energy consumption mix have made it possible for the country to be less dependent upon imported energy and gain ene... Ever since 2005, the US' shale oil and gas production growth and effective adjustment of domestic energy consumption mix have made it possible for the country to be less dependent upon imported energy and gain energy independence. What should we learn from it to guarantee energy supply security? This paper tried to answer the question. 展开更多
关键词 energy independence shale oil and gas structure adjustment energy efficiency geostrategic strategy
下载PDF
Classification of Hydrocarbon-Bearing Fine-Grained Sedimentary Rocks 被引量:4
11
作者 Zaixing Jiang Hongjie Duan +3 位作者 Chao Liang Jing Wu Wenzhao Zhang Jianguo Zhang 《Journal of Earth Science》 SCIE CAS CSCD 2017年第6期963-976,共14页
Fine-grained sedimentary rocks are defined as rocks which mainly compose of fine grains(〈62.5 μm). The detailed studies on these rocks have revealed the need of a more unified, comprehensive and inclusive classifi... Fine-grained sedimentary rocks are defined as rocks which mainly compose of fine grains(〈62.5 μm). The detailed studies on these rocks have revealed the need of a more unified, comprehensive and inclusive classification. The study focuses on fine-grained rocks has turned from the differences of inorganic mineral components to the significance of organic matter and microorganisms. The proposed classification is based on mineral composition, and it is noted that organic matters have been taken as a very important parameter in this classification scheme. Thus, four parameters, the TOC content, silica(quartz plus feldspars), clay minerals and carbonate minerals, are considered to divide the fine-grained sedimentary rocks into eight categories, and the further classification within every category is refined depending on subordinate mineral composition. The nomenclature consists of a root name preceded by a primary adjective. The root names reflect mineral constituent of the rock, including low organic(TOC〈2%), middle organic(2%4%) claystone, siliceous mudstone, limestone, and mixed mudstone. Primary adjectives convey structure and organic content information, including massive or limanited. The lithofacies are closely related to the reservoir storage space, porosity, permeability, hydrocarbon potential and shale oil/gas sweet spot, and are the key factor for the shale oil and gas exploration. The classification helps to systematically and practicably describe variability within fine-grained sedimentary rocks, what's more, it helps to guide the hydrocarbon exploration. 展开更多
关键词 fine-grained sedimentary rocks CLASSIFICATION mineral composition TOC content shale oil and gas.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部