期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Continuous TDEM for monitoring shale hydraulic fracturing 被引量:15
1
作者 Yan Liang-Jun Chen Xiao-Xiong +4 位作者 Tang Hao Xie Xing-Bing Zhou Lei Hu Wen-Bao and Wang Zhong-Xin 《Applied Geophysics》 SCIE CSCD 2018年第1期26-34,147,148,共11页
Monitoring and delineating the spatial distribution of shale fracturing is fundamentally important to shale gas production. Standard monitoring methods, such as time-lapse seismic, cross-well seismic and micro-seismic... Monitoring and delineating the spatial distribution of shale fracturing is fundamentally important to shale gas production. Standard monitoring methods, such as time-lapse seismic, cross-well seismic and micro-seismic methods, are expensive, time- consuming, and do not show the changes in the formation with time. The resistivities of hydraulic fracturing fluid and reservoir rocks were measured. The results suggest that the injection fluid and consequently the injected reservoir are characterized by very low resistivity and high chargeability. This allows using of the controlled-source electromagnetic method (CSEM) to monitor shale gas hydraulic fracturing. Based on the geoelectrical model which was proposed according to the well-log and seismic data in the test area the change rule of the reacted electrical field was studied to account for the change of shale resistivity, and then the normalized residual resistivity method for time lapse processing was given. The time-domain electromagnetic method (TDEM) was used to continuously monitor the shale gas fracturing at the Fulin shale gas field in southern China. A high-power transmitter and multi-channel transient electromagnetic receiver array were adopted. 9 h time series of Ex component of 224 sites which were laid out on the surface and over three fracturing stages of a horizontal well at 2800 m depth was recorded. After data processing and calculation of the normalized resistivity residuals, the changes in the Ex signal were determined and a dynamic 3D image of the change in resistivity was constructed. This allows modeling the spatial distribution of the fracturing fluid. The model results suggest that TDEM is promising for monitoring hydraulic fracturing of shale. 展开更多
关键词 shale fracturing RESISTIVITY time lapse 3D imaging continuous monitoring
下载PDF
Complex fracture propagation model and plugging timing optimization for temporary plugging fracturing in naturally fractured shale 被引量:1
2
作者 TANG Xuanhe ZHU Haiyan +1 位作者 CHE Mingguang WANG Yonghui 《Petroleum Exploration and Development》 2023年第1期152-165,共14页
In this paper,a viscoelasticity-plastic damage constitutive equation for naturally fractured shale is deduced,coupling nonlinear tensile-shear mixed fracture mode.Dynamic perforation-erosion on fluid re-distribution a... In this paper,a viscoelasticity-plastic damage constitutive equation for naturally fractured shale is deduced,coupling nonlinear tensile-shear mixed fracture mode.Dynamic perforation-erosion on fluid re-distribution among multi-clusters are considered as well.DFN-FEM(discrete fracture network combined with finite element method)was developed to simulate the multi-cluster complex fractures propagation within temporary plugging fracturing(TPF).Numerical results are matched with field injection and micro-seismic monitoring data.Based on geomechanical characteristics of Weiyuan deep shale gas reservoir in Sichuan Basin,SW China,a multi-cluster complex fractures propagation model is built for TPF.To study complex fractures propagation and the permeability-enhanced region evolution,intersecting and competition mechanisms between the fractures before and after TPF treatment are revealed.Simulation results show that:fracture from middle cluster is restricted by the fractures from side-clusters,and side-clusters plugging is benefit for multi fractures propagation in uniformity;optimized TPF timing should be delayed within a higher density or strike of natural fractures;Within a reservoir-featured natural fractures distribution,optimized TPF timing for most clustered method is 2/3 of total fluid injection time as the optimal plugging time under different clustering modes. 展开更多
关键词 shale gas naturally fractured shale temporary plugging fracturing fracture propagation plugging timing discrete fracture network finite element method
下载PDF
Mineralogy and fracture development characteristics of marine shale-gas reservoirs: A case study of Lower Silurian strata in southeastern margin of Sichuan Basin, China 被引量:3
3
作者 郭岭 姜在兴 郭峰 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1847-1858,共12页
Mineral contents and fractures of shale from well Yuye-1 and outcrops were examined mainly based on systematic description of the cores and outcrops, and data from experimental analyses. The data enabled us to thoroug... Mineral contents and fractures of shale from well Yuye-1 and outcrops were examined mainly based on systematic description of the cores and outcrops, and data from experimental analyses. The data enabled us to thoroughly explore the mineralogy and developmental features of shale of the Lower Silurian Longmaxi Formation in the study area. The results show that,the Lower Silurian Longmaxi Shale(SLS) in the southeastern margin of Sichuan Basin, China, is primarily characterized by a high content of brittle minerals and a relatively low content of clay minerals. The total content of brittle minerals is approximately 57%,including 27% quartz, 12.2% feldspar, 11.2% carbonate and 2.4% pyrite. The total content of clay minerals reaches 41.6%,composed of illite(23.8%), mixed-layer of illite and smectite(I/S)(10.8%) and chlorite(7.0%). The SLS accommodates the widespread development of various types of fractures, including tectonic fractures, diagenetic fractures, inter-layer fractures and slip fractures. The developmental level of the fracture in the SLS is mainly influenced by faults, lithology, mineral contents and total organic carbon content(TOC) in study area. 展开更多
关键词 shale fracture MINERALOGY gas shale Lower Silurian margin of Sichuan Basin
下载PDF
Microscale crack propagation in shale samples using focused ion beam scanning electron microscopy and three-dimensional numerical modeling 被引量:3
4
作者 Xin Liu Si-Wei Meng +3 位作者 Zheng-Zhao Liang Chun'an Tang Jia-Ping Tao Ji-Zhou Tang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1488-1512,共25页
Reliable prediction of the shale fracturing process is a challenging problem in exploiting deep shale oil and gas resources.Complex fracture networks need to be artificially created to employ deep shale oil and gas re... Reliable prediction of the shale fracturing process is a challenging problem in exploiting deep shale oil and gas resources.Complex fracture networks need to be artificially created to employ deep shale oil and gas reserves.Randomly distributed minerals and heterogeneities in shales significantly affect mechanical properties and fracturing behaviors in oil and gas exploitation.Describing the actual microstructure and associated heterogeneities in shales constitutes a significant challenge.The RFPA3D(rock failure process analysis parallel computing program)-based modeling approach is a promising numerical technique due to its unique capability to simulate the fracturing behavior of rocks.To improve traditional numerical technology and study crack propagation in shale on the microscopic scale,a combination of high-precision internal structure detection technology with the RFPA^(3D) numerical simulation method was developed to construct a real mineral structure-based modeling method.First,an improved digital image processing technique was developed to incorporate actual shale microstructures(focused ion beam scanning electron microscopy was used to capture shale microstructure images that reflect the distri-butions of different minerals)into the numerical model.Second,the effect of mineral inhomogeneity was considered by integrating the mineral statistical model obtained from the mineral nanoindentation experiments into the numerical model.By simulating a shale numerical model in which pyrite particles are wrapped by organic matter,the effects of shale microstructure and applied stress state on microcrack behavior and mechanical properties were investigated and analyzed.In this study,the effect of pyrite particles on fracture propagation was systematically analyzed and summarized for the first time.The results indicate that the distribution of minerals and initial defects dominated the fracture evolution and the failure mode.Cracks are generally initiated and propagated along the boundaries of hard mineral particles such as pyrite or in soft minerals such as organic matter.Locations with collections of hard minerals are more likely to produce complex fractures.This study provides a valuable method for un-derstanding the microfracture behavior of shales. 展开更多
关键词 FIB-SEM Digital imageprocessing Realistic microstructure 3D digital shale fracture process simulation PYRITE
下载PDF
Influence of gas transport mechanisms on the productivity of multi-stage fractured horizontal wells in shale gas reservoirs 被引量:1
5
作者 Wei Wang Jun Yao +1 位作者 Hai Sun Wen-Hui Song 《Petroleum Science》 SCIE CAS CSCD 2015年第4期664-673,共10页
In order to investigate the influence on shale gas well productivity caused by gas transport in nanometer- size pores, a mathematical model of multi-stage fractured horizontal wells in shale gas reservoirs is built, w... In order to investigate the influence on shale gas well productivity caused by gas transport in nanometer- size pores, a mathematical model of multi-stage fractured horizontal wells in shale gas reservoirs is built, which considers the influence of viscous flow, Knudsen diffusion, surface diffusion, and adsorption layer thickness. A dis- crete-fracture model is used to simplify the fracture mod- cling, and a finite element method is applied to solve the model. The numerical simulation results indicate that with a decrease in the intrinsic matrix permeability, Knudsen diffusion and surface diffusion contributions to production become large and cannot be ignored. The existence of an adsorption layer on the nanopore surfaces reduces the effective pore radius and the effective porosity, resulting in low production from fractured horizontal wells. With a decrease in the pore radius, considering the adsorption layer, the production reduction rate increases. When the pore radius is less than 10 nm, because of the combined impacts of Knudsen diffusion, surface diffusion, and adsorption layers, the production of multi-stage fractured horizontal wells increases with a decrease in the pore pressure. When the pore pressure is lower than 30 MPa, the rate of production increase becomes larger with a decrease in pore pressure. 展开更多
关键词 shale gas - Transport mechanisms ~Numerical simulation - Fractured horizontal wellProduction
下载PDF
Fracture detection by using full azimuth P wave attributes 被引量:16
6
作者 Qu Shouli Ji Yuxin Wang Xin Wang Xiuling Chen xinrong Shen Guoqiang 《Applied Geophysics》 SCIE CSCD 2007年第3期238-243,共6页
A type of specific fractured hydrocarbon reservoir, a shale fractured reservoir, exists in the Shengli oilfield. Due to very small porosity of this type, low sensitivity to the variation of petrochemical property para... A type of specific fractured hydrocarbon reservoir, a shale fractured reservoir, exists in the Shengli oilfield. Due to very small porosity of this type, low sensitivity to the variation of petrochemical property parameters, and strong anisotropy, it is very difficult to explore for them. So far, there is no set of mature methods for recognition of direction, distribution, and density of the fractures by an integrated analysis of geologic, geophysical, well log, drilling data, and etc. This paper presents a new method for acoustic impedance variation with azimuth (IPVA), based on existing fracture detection methods. Seismic acquisition, processing, and recognition techniques were developed for detecting directional vertical fractures using multi-azimuth P wave data in combination with the seismic and geological features of shale fractures in the Luojia area. The IPVA research is carried out for recognizing the distribution, strike, and density of fractures based on the study of velocity variation with azimuth (VVA) and amplitude variation with azimuth (AVA) for full azimuth P wave data at different CMP positions. Through practical application in the Luojia area, primary results have been obtained which verifies that the IPVA method provides good potential for quantitative detection of parallel, high angle, shale fractures. 展开更多
关键词 shale fractures VELOCITY AMPLITUDE acoustic impedance P wave full azimuth
下载PDF
A numerical approach for pressure transient analysis of a vertical well with complex fractures 被引量:7
7
作者 Yizhao Wan Yuewu Liu +2 位作者 Wenchao Liu Guofeng Han Congcong Niu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第4期640-648,共9页
A new well test model for a vertical fractured well is developed based on a discrete-fracture model in which the fractures are discretized as one dimensional(1-D) entities.The model overcomes the weakness of complex... A new well test model for a vertical fractured well is developed based on a discrete-fracture model in which the fractures are discretized as one dimensional(1-D) entities.The model overcomes the weakness of complex meshing,a large number of grids, and instability in conventional stripe-fracture models. Then, the discrete-fracture model is implemented using a hybrid element finite-element method.Triangular elements are used for matrix and line elements for the fractures. The finite element formulation is validated by comparing with the semi-analytical solution of a single vertical fractured well. The accuracy of the approach is shown through several examples with different fracture apertures,fracture conductivity, and fracture amount. Results from the discrete-fracture model agree reasonably well with the stripefracture model and the analytic solutions. The advantages of the discrete-fracture model are presented in mesh generation, computational improvement, and abilities to handle complex fractures like wedge-shaped fractures and fractures with branches. Analytical results show that the number of grids in the discrete-fracture model is 10 % less than stripefracture model, and computational efficiency increases by about 50 %. The more fractures there are, the more the computational efficiency increases. 展开更多
关键词 fractured permeability reservoir reasonably branches porosity instability weakness shale handle
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部