The efficient development and exploitation of shale oil depends on long-distance horizontal wells. As the degreeof cleaning of the wellbore plays a key role in these processes, in this study, this problem is investiga...The efficient development and exploitation of shale oil depends on long-distance horizontal wells. As the degreeof cleaning of the wellbore plays a key role in these processes, in this study, this problem is investigated experimentallyby focusing on the dimensionless cuttings bed height. A method is proposed to calculate the horizontalwellhydraulic extension taking into account the influence of the wellbore cleaning degree on the wellborepressure distribution and assess the effect of a variety of factors such as the bottom hole pressure, the circulatingpressure drop, the drilling pump performance and the formation properties. The analysis shows that the hydraulicextension of horizontal wells decreases with an increase in the cuttings bed height, and the higher the displacementof drilling fluid, the faster the hydraulic extension declines. The annular pressure drop of the horizontalsection increases with the increase of the cuttings bed height, resulting in a higher bottom-hole pressure. Severalarguments are provided to guide the safe drilling of shale oil horizontal wells and overcome the limits of currenttechnological approaches.展开更多
We present a systematic summary of the geological characteristics,exploration and development history and current state of shale oil and gas in the United States.The hydrocarbon-rich shales in the major shale basins o...We present a systematic summary of the geological characteristics,exploration and development history and current state of shale oil and gas in the United States.The hydrocarbon-rich shales in the major shale basins of the United States are mainly developed in six geological periods:Middle Ordovician,Middle-Late Devonian,Early Carboniferous(Middle-Late Mississippi),Early Permian,Late Jurassic,and Late Cretaceous(Cenomanian-Turonian).Depositional environments for these shales include intra-cratonic basins,foreland basins,and passive continental margins.Paleozoic hydrocarbon-rich shales are mainly developed in six basins,including the Appalachian Basin(Utica and Marcellus shales),Anadarko Basin(Woodford Shale),Williston Basin(Bakken Shale),Arkoma Basin(Fayetteville Shale),Fort Worth Basin(Barnett Shale),and the Wolfcamp and Leonardian Spraberry/Bone Springs shale plays of the Permian Basin.The Mesozoic hydrocarbon-rich shales are mainly developed on the margins of the Gulf of Mexico Basin(Haynesville and Eagle Ford)or in various Rocky Mountain basins(Niobrara Formation,mainly in the Denver and Powder River basins).The detailed analysis of shale plays reveals that the shales are different in facies and mineral components,and"shale reservoirs"are often not shale at all.The United States is abundant in shale oil and gas,with the in-place resources exceeding 0.246×10^(12)t and 290×10^(12)m^(3),respectively.Before the emergence of horizontal well hydraulic fracturing technology to kick off the"shale revolution",the United States had experienced two decades of exploration and production practices,as well as theory and technology development.In 2007-2023,shale oil and gas production in the United States increased from approximately 11.2×10^(4)tons of oil equivalent per day(toe/d)to over 300.0×10^(4)toe/d.In 2017,the shale oil and gas production exceeded the conventional oil and gas production in the country.In 2023,the contribution from shale plays to the total U.S.oil and gas production remained above 60%.The development of shale oil and gas has largely been driven by improvements in drilling and completion technologies,with much of the recent effort focused on“cube development”or“co-development”.Other efforts to improve productivity and efficiency include refracturing,enhanced oil recovery,and drilling of“U-shaped”wells.Given the significant resources base and continued technological improvements,shale oil and gas production will continue to contribute significant volumes to total U.S.hydrocarbon production.展开更多
Black shales are important products of material cycling and energy exchange among the lithosphere,atmosphere,hydrosphere,and biosphere.They are widely distributed throughout geological history and provide essential en...Black shales are important products of material cycling and energy exchange among the lithosphere,atmosphere,hydrosphere,and biosphere.They are widely distributed throughout geological history and provide essential energy and mineral resources for the development of human society.They also record the evolution process of the earth and improve the understanding of the earth.This review focuses on the diagenesis and formation mechanisms of black shales sedimentation,composition,evolution,and reconstruction,which have had a significant impact on the formation and enrichment of shale oil and gas.In terms of sedimentary environment,black shales can be classified into three types:Marine,terrestrial,and marine-terrestrial transitional facies.The formation processes include mechanisms such as eolian input,hypopycnal flow,gravity-driven and offshore bottom currents.From a geological perspective,the formation of black shales is often closely related to global or regional major geological events.The enrichment of organic matter is generally the result of the interaction and coupling of several factors such as primary productivity,water redox condition,and sedimentation rate.In terms of evolution,black shales have undergone diagenetic evolution of inorganic minerals,thermal evolution of organic matter and hydrocarbon generation,interactions between organic matter and inorganic minerals,and pore evolution.In terms of reconstruction,the effects of fold deformation,uplift and erosion,and fracturing have changed the stress state of black shale reservoirs,thereby having a significant impact on the pore structure.Fluid activity promotes the formation of veins,and have changed the material composition,stress structure,and reservoir properties of black shales.Regarding resource effects,the deposition of black shales is fundamental for shale oil and gas resources,the evolution of black shales promotes the shale oil and gas formation and storage,and the reconstruction of black shales would have caused the heterogeneous distribution of oil and gas in shales.Exploring the formation mechanisms and interactions of black shales at different scales is a key to in-depth research on shale formation and evolution,as well as the key to revealing the mechanism controlling shale oil and gas accumulation.The present records can reveal how these processes worked in geological history,and improve our understanding of the coupling mechanisms among regional geological events,black shales evolution,and shale oil and gas formation and enrichment.展开更多
An optimization method of fracturing fluid volume strength was introduced taking well X-1 in Biyang Sag of Nanxiang Basin as an example.The characteristic curves of capillary pressure and relative permeability were ob...An optimization method of fracturing fluid volume strength was introduced taking well X-1 in Biyang Sag of Nanxiang Basin as an example.The characteristic curves of capillary pressure and relative permeability were obtained from history matching between forced imbibition experimental data and core-scale reservoir simulation results and taken into a large scale reservoir model to mimic the forced imbibition behavior during the well shut-in period after fracturing.The optimization of the stimulated reservoir volume(SRV)fracturing fluid volume strength should meet the requirements of estimated ultimate recovery(EUR),increased oil recovery by forced imbibition and enhancement of formation pressure and the fluid volume strength of fracturing fluid should be controlled around a critical value to avoid either insufficiency of imbibition displacement caused by insufficient fluid amount or increase of costs and potential formation damage caused by excessive fluid amount.Reservoir simulation results showed that SRV fracturing fluid volume strength positively correlated with single-well EUR and an optimal fluid volume strength existed,above which the single-well EUR increase rate kept decreasing.An optimized increase of SRV fracturing fluid volume and shut-in time would effectively increase the formation pressure and enhance well production.Field test results of well X-1 proved the practicality of established optimization method of SRV fracturing fluid volume strength on significant enhancement of shale oil well production.展开更多
Continental shale oil reservoirs,characterized by numerous bedding planes and micro-nano scale pores,feature significantly higher stress sensitivity compared to other types of reservoirs.However,research on suitable s...Continental shale oil reservoirs,characterized by numerous bedding planes and micro-nano scale pores,feature significantly higher stress sensitivity compared to other types of reservoirs.However,research on suitable stress sensitivity characterization models is still limited.In this study,three commonly used stress sensitivity models for shale oil reservoirs were considered,and experiments on representative core samples were conducted.By fitting and comparing the data,the“exponential model”was identified as a characterization model that accurately represents stress sensitivity in continental shale oil reservoirs.To validate the accuracy of the model,a two-phase seepage mathematical model for shale oil reservoirs coupled with the exponential model was introduced.The model was discretely solved using the finite volume method,and its accuracy was verified through the commercial simulator CMG.The study evaluated the productivity of a typical horizontal well under different engineering,geological,and fracture conditions.The results indicate that considering stress sensitivity leads to a 13.57%reduction in production for the same matrix permeability.Additionally,as the fracture half-length and the number of fractures increase,and the bottomhole flowing pressure decreases,the reservoir stress sensitivity becomes higher.展开更多
By systematically summarizing horizontal well fracturing technology abroad for shale oil and gas reservoirs since the “13th Five-Year Plan”, this article elaborates new horizontal well fracturing features in 3D deve...By systematically summarizing horizontal well fracturing technology abroad for shale oil and gas reservoirs since the “13th Five-Year Plan”, this article elaborates new horizontal well fracturing features in 3D development of stacked shale reservoirs, small well spacing and dense well pattern, horizontal well re-fracturing, fracturing parameters optimization and cost control. In light of requirements on horizontal well fracturing technology in China, we have summarized the technological progress in simulation of multi-fracture propagation, horizontal well frac-design, electric-drive fracturing equipment, soluble tools and low-cost downhole materials and factory-like operation. On this basis, combined with the demand analysis of horizontal well fracturing technology in the “14th Five-Year Plan” for unconventional shale oil and gas, we suggest strengthening the research and development in the following 7 aspects:(1) geology-engineering integration;(2) basic theory and design optimization of fracturing for shale oil and gas reservoirs;(3) development of high-power electric-drive fracturing equipment;(4) fracturing tool and supporting equipment for long horizontal section;(5) horizontal well flexible-sidetracking drilling technology for tapping remaining oil;(6) post-frac workover technology for long horizontal well;(7) intelligent fracturing technology.展开更多
Organic rich dark shale of Q Formation can be found in many areas(e.g.,in the North of S Basin).The shale target stratum is easy to hydrate and often undergoes spallation.Therefore,centering the casing in the horizont...Organic rich dark shale of Q Formation can be found in many areas(e.g.,in the North of S Basin).The shale target stratum is easy to hydrate and often undergoes spallation.Therefore,centering the casing in the horizontal section of the irregular borehole is relatively difficult.Similarly,achieving a good cementflushing efficiency under complex borehole conditions is a complex task.Through technologies such as centralizer,efficient preflushing,multi-stageflushing and ductile cement slurry,better performances can be achieved.In this study,it is shown that the cementing rate in the DY2H horizontal section is 97.8%,which is more than 34%higher than that of adjacent wells.This cementing matching technology for sidetracking horizontal wells can be used to improve the cementing quality of continental shale and provides a reference for future applications in thisfield.展开更多
The shale oil and gas exploitation in China is technically benchmarked with the United States in terms of development philosophy,reservoir stimulation treatment,fracturing parameters,fracturing equipment and materials...The shale oil and gas exploitation in China is technically benchmarked with the United States in terms of development philosophy,reservoir stimulation treatment,fracturing parameters,fracturing equipment and materials,oil/gas production technology,and data/achievements sharing.It is recognized that the shale oil and gas exploitation in China is weak in seven aspects:understanding of flow regimes,producing of oil/gas reserves,monitoring of complex fractures,repeated stimulation technology,oil/gas production technology,casing deformation prevention technology,and wellbore maintenance technology.Combined with the geological and engineering factors of shale oil and gas in China,the development suggestions of four projects are proposed from the macro-and micro-perspective,namely,basic innovation project,exploitation technology project,oil/gas production stabilization project,and supporting efficiency-improvement project,so as to promote the rapid,efficient,stable,green and extensive development of shale oil and gas industry chain and innovation chain and ultimately achieve the goal of“oil volume stabilizing and gas volume increasing”.展开更多
Theflow behavior of shale gas horizontal wells is relatively complex,and this should be regarded as the main reason for which conventional pipeflow models are not suitable to describe the related dynamics.In this stud...Theflow behavior of shale gas horizontal wells is relatively complex,and this should be regarded as the main reason for which conventional pipeflow models are not suitable to describe the related dynamics.In this study,numerical simulations have been conducted to determine the gas-liquid distribution in these wells.In particular,using the measuredflow pressure data related to 97 groups of shale gas wells as a basis,9 distinct pipeflow models have been assessed,and the models displaying a high calculation accuracy for different water-gas ratio(WGR)ranges have been identified.The results show that:(1)The variation law of WGR in gas well satisfies a power function relation.(2)The well structure is the main factor affecting the gas-liquid distribution in the wellbore.(3)The Beggs&Brill,Hagedorn&Brown and Gray models exhibit a high calculation accuracy.展开更多
The production performances of a well with a shale gas reservoir displaying a complex fracture network are simulated.In particular,a micro-seismic cloud diagram is used to describe the fracture network,and accordingly...The production performances of a well with a shale gas reservoir displaying a complex fracture network are simulated.In particular,a micro-seismic cloud diagram is used to describe the fracture network,and accordingly,a production model is introduced based on a multi-scale flow mechanism.A finite volume method is then exploited for the integration of the model equations.The effects of apparent permeability,conductivity,Langmuir volume,and bottom hole pressure on gas well production are studied accordingly.The simulation results show that ignoring the micro-scale flow mechanism of the shale gas leads to underestimating the well gas production.It is shown that after ten years of production,the cumulative gas production difference between the two scenarios with and without considering the micro-scale flow mechanisms is 19.5%.The greater the fracture conductivity,the higher the initial gas production of the gas well and the cumulative gas production.The larger the Langmuir volume,the higher the gas production rate and the cumulative gas production.With the reduction of the bottom hole pressure,the cumulative gas production increases,but the growth rate gradually decreases.展开更多
The shale gas accumulation conditions in the basin-margin transition zone of southeastern Chongqing in SW China are complex.In order to improve single-well productivity in this area,the geologic characteristics,major ...The shale gas accumulation conditions in the basin-margin transition zone of southeastern Chongqing in SW China are complex.In order to improve single-well productivity in this area,the geologic characteristics,major factors controlling the occurrence of sweet spots,and drilling/fracturing optimization were investigated in this study.The sweet spot evaluation system and criteria were established,and the horizontal-well-design technology was developed.The following three conclusions were drawn.First,the accumulation and high-productivity-oriented approaches for sweet spot evaluation are proposed and the criteria are established based on screened key indicators.Second,the horizontal well was designed based on:(1)the“six-map”method,to identify both the geology and engineering sweet spots for well locations;and(2)seismic attributes,to predict the development of fractures and cavities,and thus,avoid mud loss and improve the drilling efficiency.The target window,well-azimuth optimization,and the curvature were forecasted to improve the fracturing performances.Third,the Pingqiao anticline,Dongsheng anticline,Jinfo slope,and Wulong syncline were selected as Type I sweet spots.Currently,shale gas has been successfully discovered in the basin-margin transition zone and is being commercially developed.展开更多
For thin oil rim reservoir with gas cap and edge water, it is helpful to improve the development effect to find out the distribution law of remaining oil in this kind of reservoirs. For this reason, taking the narrow ...For thin oil rim reservoir with gas cap and edge water, it is helpful to improve the development effect to find out the distribution law of remaining oil in this kind of reservoirs. For this reason, taking the narrow oil rim reservoir with gas cap and edge water of Oilfield A in Bohai Sea as a case, the main controlling factors, including reservoir structure, fault, gas cap energy, edge water energy and well pattern, affecting the distribution of residual oil in this kind of reservoir were analyzed by using the data of core, logging, paleogeomorphology and production. Then, the distribution law of remaining oil was summarized. Generally, the remaining oil distribution is mainly potato-shaped or strip-shaped in plane. Vertically, it depends on the energy of gas cap and edge water. For the reservoir with big gas gap and weak edge water, the remaining oil mainly lies in the bottom of oil column. And for the reservoir with small gas gap and strong edge water, the remaining oil mainly locates at the top of oil column. Aiming at different distribution modes of remaining oil, the corresponding potential tapping strategies of horizontal wells are put forward: in the late stage of development, for the reservoir with big gas gap and weak edge water, the remaining oil concentrates at the bottom of the oil column, and the position of horizontal well should be placed at the lower 1/3 to the lower 1/5 of the oil column;for the reservoir with small gas cap and strong edge water, the remaining oil locates at the top of the oil column, and the position of horizontal well should be put at the upper 1/5 to the upper 1/3 of the oil column height, vertically. Based on the study on remaining oil of Oilfield A, a potential tapping strategy of well pattern thickening and vertical position optimization of horizontal well was proposed. This strategy guided the efficient implementation of the comprehensive adjustment plan of the oilfield. Moreover, 18 infill development wells were implemented in Oilfield A, and the average production of the infill wells is 2.1 times that of the surrounding old wells. It is estimated that the ultimate recovery factor of the oilfield will reach 33.9%, which is 2.3% higher than that before infilling wells. This study can be used for reference in the development of similar reservoirs.展开更多
This paper reviews the basic research means for oilfield development and also the researches and tests of enhanced oil recovery(EOR)methods for mature oilfields and continental shale oil development,analyzes the probl...This paper reviews the basic research means for oilfield development and also the researches and tests of enhanced oil recovery(EOR)methods for mature oilfields and continental shale oil development,analyzes the problems of EOR methods,and proposes the relevant research prospects.The basic research means for oilfield development include in-situ acquisition of formation rock/fluid samples and non-destructive testing.The EOR methods for conventional and shale oil development are classified as improved water flooding(e.g.nano-water flooding),chemical flooding(e.g.low-concentration middle-phase micro-emulsion flooding),gas flooding(e.g.micro/nano bubble flooding),thermal recovery(e.g.air injection thermal-aided miscible flooding),and multi-cluster uniform fracturing/water-free fracturing,which are discussed in this paper for their mechanisms,approaches,and key technique researches and field tests.These methods have been studied with remarkable progress,and some achieved ideal results in field tests.Nonetheless,some problems still exist,such as inadequate research on mechanisms,imperfect matching technologies,and incomplete industrial chains.It is proposed to further strengthen the basic researches and expand the field tests,thereby driving the formation,promotion and application of new technologies.展开更多
For the analysis of the formation damage caused by the compound function of drilling fluid and fracturing fluid,the prediction method for dynamic invasion depth of drilling fluid is developed considering the fracture ...For the analysis of the formation damage caused by the compound function of drilling fluid and fracturing fluid,the prediction method for dynamic invasion depth of drilling fluid is developed considering the fracture extension due to shale minerals erosion by oil-based drilling fluid.With the evaluation for the damage of natural and hydraulic fractures caused by mechanical properties weakening of shale fracture surface,fracture closure and rock powder blocking,the formation damage pattern is proposed with consideration of the compound effect of drilling fluid and fracturing fluid.The formation damage mechanism during drilling and completion process in shale reservoir is revealed,and the protection measures are raised.The drilling fluid can deeply invade into the shale formation through natural and induced fractures,erode shale minerals and weaken the mechanical properties of shale during the drilling process.In the process of hydraulic fracturing,the compound effect of drilling fluid and fracturing fluid further weakens the mechanical properties of shale,results in fracture closure and rock powder shedding,and thus induces stress-sensitive damage and solid blocking damage of natural/hydraulic fractures.The damage can yield significant conductivity decrease of fractures,and restrict the high and stable production of shale oil and gas wells.The measures of anti-collapse and anti-blocking to accelerate the drilling of reservoir section,forming chemical membrane to prevent the weakening of the mechanical properties of shale fracture surface,strengthening the plugging of shale fracture and reducing the invasion range of drilling fluid,optimizing fracturing fluid system to protect fracture conductivity are put forward for reservoir protection.展开更多
Pressure buildup testing can be used to analyze fracture network characteristics and conduct quantitative interpretation of relevant parameters for shale gas wells,thus providing bases for assessing the well productiv...Pressure buildup testing can be used to analyze fracture network characteristics and conduct quantitative interpretation of relevant parameters for shale gas wells,thus providing bases for assessing the well productivity and formulating proper development strategies.This study establishes a new well test interpretation model for fractured horizontal wells based on seepage mechanisms of shale reservoirs and proposes a method for identifying fracturing patterns based on the characteristic slopes of pressure buildup curves and curve combination patterns.The pressure buildup curve patterns are identified to represent three types of shale reservoirs in the Sichuan Basin,namely the moderately deep shale reservoirs with high pressure,deep shale reservoirs with ultra-high pressure,and moderately deep shale reservoirs with normal pressure.Based on this,the relationship between the typical pressure buildup curve patterns and the fracture network types are put forward.Fracturing effects of three types of shale gas reservoir are compared and analyzed.The results show that typical flow patterns of shale reservoirs include bilinear flow in primary and secondary fractures,linear flow in secondary fractures,bilinear flow in secondary fractures and matrix,and linear flow in matrix.The fracture network characteristics can be determined using the characteristic slopes of pressure buildup curves and curve combinations.The linear flow in early secondary fractures is increasingly distinct with an increase in primary fracture conductivity.Moreover,the bilinear flow in secondary fractures and matrix and the subsequent linear flow in the matrix occur as the propping and density of secondary fractures increase.The increase in the burial depth,in-situ stress,and stress difference corresponds to a decrease in the propping of primary fractures that expand along different directions in the shale gas wells in the Sichuan Basin.Four pressure buildup curve patterns exist in the Sichuan Basin and its periphery.The pattern of pressure buildup curves of shale reservoirs in the Yongchuan area can be described as 1/2/→1/4,indicating limited stimulated reservoir volume,poorly propped secondary fractures,and the forming of primary fractures that extend only to certain directions.The pressure buildup curves of shale reservoirs in the main block of the Fuling area show a pattern of 1/4/→1/2 or 1/2,indicating greater stimulated reservoir volume,well propped secondary fractures,and the forming of complex fracture networks.The pattern of pressure buildup curves of shale reservoirs in the Pingqiao area is 1/2/→1/4→/1/2,indicating a fracturing effect somewhere between that of the Fuling and Yongchuan areas.For reservoirs with normal pressure,it is difficult to determine fracture network characteristics from pressure buildup curves due to insufficient formation energy and limited liquid drainage.展开更多
This paper reviews the multiple rounds of upgrades of the hydraulic fracturing technology used in the Gulong shale oil reservoirs and gives suggestions about stimulation technology development in relation to the produ...This paper reviews the multiple rounds of upgrades of the hydraulic fracturing technology used in the Gulong shale oil reservoirs and gives suggestions about stimulation technology development in relation to the production performance of Gulong shale oil wells.Under the control of high-density bedding fractures,fracturing in the Gulong shale results in a complex fracture morphology,yet with highly suppressed fracture height and length.Hydraulic fracturing fails to generate artificial fractures with sufficient lengths and heights,which is a main restraint on the effective stimulation in the Gulong shale oil reservoirs.In this regard,the fracturing design shall follow the strategy of"controlling near-wellbore complex fractures and maximizing the extension of main fractures"Increasing the proportions of guar gum fracturing fluids,reducing perforation clusters within one fracturing stage,raising pump rates and appropriately exploiting stress interference are conducive to fracture propagation and lead to a considerably expanded stimulated reservoir volume(SRV).The upgraded main hydraulic fracturing technology is much more applicable to the Gulong shale oil reservoirs.It accelerates the oil production with a low flowback rate and lifts oil cut during the initial production of well groups,which both help to improve well production.It is suggested to optimize the hydraulic fracturing technology in six aspects,namely,suppressing propagation of near-wellbore microfractures,improving the pumping scheme of CO_(2),managing the perforating density,enhancing multi-proppant combination,reviewing well pattern/spacing,and discreetly applying fiber-assisted injection,so as to improve the SRv,the distal fracture complexity and the long-term fracture conductivity.展开更多
In order to analyze and compare the differences in pore structures between shale gas and shale oil formations, a few samples from the Longmaxi and Bakken Formations were collected and studied using X-ray diffraction, ...In order to analyze and compare the differences in pore structures between shale gas and shale oil formations, a few samples from the Longmaxi and Bakken Formations were collected and studied using X-ray diffraction, LECO TOC measurement, gas adsorption and field-emission scanning electron microscope. The results show that samples from the Bakken Formation have a higher TOC than those from the Longmaxi Formation. The Longmaxi Formation has higher micropore volume and larger micropore surface area and exhibited a smaller average distribution of microsize pores compared to the Bakken Formation. Both formations have similar meso-macropore volume. The Longmaxi Formation has a much larger meso-macropore surface area, which is corresponding to a smaller average meso-macropore size. CO_2 adsorption data processing shows that the pore size of the majority of the micropores in the samples from the Longmaxi Formation is less than 1 nm, while the pore size of the most of the micropores in the samples from the Bakken Formation is larger than 1 nm. Both formations have the same number of pore clusters in the 2–20 nm range, but the Bakken Formation has two additional pore size groups with mean pore size diameters larger than 20 nm. Multifractal analysis of pore size distribution curves that was derived from gas adsorption indicates that the samples from the Longmaxi Formation have more significant micropore heterogeneity and less meso-macropore heterogeneity. Abundant micropores as well as mesomacropores exist in the organic matter in the Longmaxi Formation, while the organic matter of the Bakken Formation hosts mainly micropores.展开更多
As a milestone of the entire energy industry,unconventional resources have inevitably swept the world in the last decade,and will certainly dominate the global oil and gas industry in the near future.Eventually,the "...As a milestone of the entire energy industry,unconventional resources have inevitably swept the world in the last decade,and will certainly dominate the global oil and gas industry in the near future.Eventually,the "unconventional" will become "conventional".Along with the rapid development,however,some issues have emerged,which are closely related to the viability of unconventional resources development.Under the current circumstances of low crude oil and gas price,coupled with the prominent environmental concerns,the arguments about the development and production of unconventional resources have been recently heated up.This work introduced the fullblown aspects of unconventional resources especially shale reservoirs,by discussing their concepts and definitions,reviewing the shale gas and shale oil development history and necessity,analyzing the shale plays' geology and petroleum systems with respects to key hydrocarbon accumulation elements and mechanisms,and summarizing the technology resolution.This study also discussed the relevant key issues,including significant estimation uncertainty of technically recoverable resources,the equivocal understanding of complex geology preventing the production and technologies implementation optimization,the difficulties of experiences and technologies global expanding,and the corresponding risks and uncertainties.In addition,based on the latest production and exploration data,the future perspective of the unconventional resources was depicted from global unconventional resources assessments,technology development,and limitations constraining the development.展开更多
One of the important indicators of shale gas reservoir excavation is capacity evaluation,which directly affects whether large-scale shale gas reservoirs can be excavated.Capacity evaluation is the basis of system anal...One of the important indicators of shale gas reservoir excavation is capacity evaluation,which directly affects whether large-scale shale gas reservoirs can be excavated.Capacity evaluation is the basis of system analysis and dynamic prediction.Therefore,it is particularly important to conduct capacity evaluation studies on shale gas horizontal wells.In order to accurately evaluate the horizontal well productivity of shale gas staged fracturing,this paper uses a new method to evaluate the productivity of Fuling shale gas.The new method is aimed at the dynamic difference of horizontal wells and effectively analyzes the massive data,which are factors affecting the productivity of shale gas horizontal wells.According to the pressure system,production dynamic characteristics,well trajectory position,fracturing transformation mode and penetration depth,32 wells were divided into four types.Then,based on the classification,the principal component analysis methods can be used to evaluate the horizontal well productivity of shale gas.The new method of capacity evaluation has improved the accuracy by 10.25%compared with the traditional method,which provides a theoretical basis for guiding the efficient development of the horizontal wells of Fuling shale gas.展开更多
In order to evaluate the geological characteristics and gas-bearing factors of Niutitang Formation within the Lower Cambrian of northern Guizhou,the Huangping area located at the southern edge of the ancient uplift be...In order to evaluate the geological characteristics and gas-bearing factors of Niutitang Formation within the Lower Cambrian of northern Guizhou,the Huangping area located at the southern edge of the ancient uplift belt of Xuefeng Mountain was selected as the target area,and Well Huangdi 1 was drilled for the geological survey of shale gas.Through geological background analysis and well logging and laboratory analysis such as organic geochemical test,gas content analysis,isothermal adsorption,and specific surface area experiments on Well Huangdi 1,the results show that the Niutitang Formation is a deep-water shelf,trough-like folds and thrust fault.The thickness of black shale is 119.95 m,of which carbonaceous shale is 89.6 m.The average value of organic carbon content is 3.55%,kerogen vitrinite reflectance value is 2.37% and kerogen type is sapropel-type.The brittle mineral content is 51%(quartz 38%),clay mineral content is 38.3%.The value of porosity and permeability are 0.5%and 0.0014 mD,which the reservoir of the Niutitang Formation belongs to low permeability with characteristics of ultra-low porosity.The gas content is 0.09‒1.31 m^3/t with a high-value area and a second high-value area.By comparing with the geological parameters of adjacent wells in the adjacent area,the accumulation model of“sediment control zone,Ro control zone,structure controlling reservoir”in the study area is proposed.Therefore,deep-water shelf-slope facies,Ro is between high maturity-early stage of overmaturity and well-preserved zones in the Niutitang Formation in this area are favorable direction for the next step of shale gas exploration.展开更多
基金supported by CNPC Key Core Technology Research Projects (2022ZG06)project funded by China Postdoctoral Science Foundation (2021M693508)Basic research and strategic reserve technology research fund project of institutes directly under CNPC.
文摘The efficient development and exploitation of shale oil depends on long-distance horizontal wells. As the degreeof cleaning of the wellbore plays a key role in these processes, in this study, this problem is investigated experimentallyby focusing on the dimensionless cuttings bed height. A method is proposed to calculate the horizontalwellhydraulic extension taking into account the influence of the wellbore cleaning degree on the wellborepressure distribution and assess the effect of a variety of factors such as the bottom hole pressure, the circulatingpressure drop, the drilling pump performance and the formation properties. The analysis shows that the hydraulicextension of horizontal wells decreases with an increase in the cuttings bed height, and the higher the displacementof drilling fluid, the faster the hydraulic extension declines. The annular pressure drop of the horizontalsection increases with the increase of the cuttings bed height, resulting in a higher bottom-hole pressure. Severalarguments are provided to guide the safe drilling of shale oil horizontal wells and overcome the limits of currenttechnological approaches.
基金supported by the State of Texas Advanced Resource Recovery(STARR)programthe Bureau of Economic Geology's Tight Oil Resource Assessment(TORA)Mudrock Systems Research Laboratory(MSRL)consortia。
文摘We present a systematic summary of the geological characteristics,exploration and development history and current state of shale oil and gas in the United States.The hydrocarbon-rich shales in the major shale basins of the United States are mainly developed in six geological periods:Middle Ordovician,Middle-Late Devonian,Early Carboniferous(Middle-Late Mississippi),Early Permian,Late Jurassic,and Late Cretaceous(Cenomanian-Turonian).Depositional environments for these shales include intra-cratonic basins,foreland basins,and passive continental margins.Paleozoic hydrocarbon-rich shales are mainly developed in six basins,including the Appalachian Basin(Utica and Marcellus shales),Anadarko Basin(Woodford Shale),Williston Basin(Bakken Shale),Arkoma Basin(Fayetteville Shale),Fort Worth Basin(Barnett Shale),and the Wolfcamp and Leonardian Spraberry/Bone Springs shale plays of the Permian Basin.The Mesozoic hydrocarbon-rich shales are mainly developed on the margins of the Gulf of Mexico Basin(Haynesville and Eagle Ford)or in various Rocky Mountain basins(Niobrara Formation,mainly in the Denver and Powder River basins).The detailed analysis of shale plays reveals that the shales are different in facies and mineral components,and"shale reservoirs"are often not shale at all.The United States is abundant in shale oil and gas,with the in-place resources exceeding 0.246×10^(12)t and 290×10^(12)m^(3),respectively.Before the emergence of horizontal well hydraulic fracturing technology to kick off the"shale revolution",the United States had experienced two decades of exploration and production practices,as well as theory and technology development.In 2007-2023,shale oil and gas production in the United States increased from approximately 11.2×10^(4)tons of oil equivalent per day(toe/d)to over 300.0×10^(4)toe/d.In 2017,the shale oil and gas production exceeded the conventional oil and gas production in the country.In 2023,the contribution from shale plays to the total U.S.oil and gas production remained above 60%.The development of shale oil and gas has largely been driven by improvements in drilling and completion technologies,with much of the recent effort focused on“cube development”or“co-development”.Other efforts to improve productivity and efficiency include refracturing,enhanced oil recovery,and drilling of“U-shaped”wells.Given the significant resources base and continued technological improvements,shale oil and gas production will continue to contribute significant volumes to total U.S.hydrocarbon production.
基金supported by the projects of the China Geological Survey(DD20230043,DD20240048)the project of the National Natural Science Foundation of China(42102123)。
文摘Black shales are important products of material cycling and energy exchange among the lithosphere,atmosphere,hydrosphere,and biosphere.They are widely distributed throughout geological history and provide essential energy and mineral resources for the development of human society.They also record the evolution process of the earth and improve the understanding of the earth.This review focuses on the diagenesis and formation mechanisms of black shales sedimentation,composition,evolution,and reconstruction,which have had a significant impact on the formation and enrichment of shale oil and gas.In terms of sedimentary environment,black shales can be classified into three types:Marine,terrestrial,and marine-terrestrial transitional facies.The formation processes include mechanisms such as eolian input,hypopycnal flow,gravity-driven and offshore bottom currents.From a geological perspective,the formation of black shales is often closely related to global or regional major geological events.The enrichment of organic matter is generally the result of the interaction and coupling of several factors such as primary productivity,water redox condition,and sedimentation rate.In terms of evolution,black shales have undergone diagenetic evolution of inorganic minerals,thermal evolution of organic matter and hydrocarbon generation,interactions between organic matter and inorganic minerals,and pore evolution.In terms of reconstruction,the effects of fold deformation,uplift and erosion,and fracturing have changed the stress state of black shale reservoirs,thereby having a significant impact on the pore structure.Fluid activity promotes the formation of veins,and have changed the material composition,stress structure,and reservoir properties of black shales.Regarding resource effects,the deposition of black shales is fundamental for shale oil and gas resources,the evolution of black shales promotes the shale oil and gas formation and storage,and the reconstruction of black shales would have caused the heterogeneous distribution of oil and gas in shales.Exploring the formation mechanisms and interactions of black shales at different scales is a key to in-depth research on shale formation and evolution,as well as the key to revealing the mechanism controlling shale oil and gas accumulation.The present records can reveal how these processes worked in geological history,and improve our understanding of the coupling mechanisms among regional geological events,black shales evolution,and shale oil and gas formation and enrichment.
文摘An optimization method of fracturing fluid volume strength was introduced taking well X-1 in Biyang Sag of Nanxiang Basin as an example.The characteristic curves of capillary pressure and relative permeability were obtained from history matching between forced imbibition experimental data and core-scale reservoir simulation results and taken into a large scale reservoir model to mimic the forced imbibition behavior during the well shut-in period after fracturing.The optimization of the stimulated reservoir volume(SRV)fracturing fluid volume strength should meet the requirements of estimated ultimate recovery(EUR),increased oil recovery by forced imbibition and enhancement of formation pressure and the fluid volume strength of fracturing fluid should be controlled around a critical value to avoid either insufficiency of imbibition displacement caused by insufficient fluid amount or increase of costs and potential formation damage caused by excessive fluid amount.Reservoir simulation results showed that SRV fracturing fluid volume strength positively correlated with single-well EUR and an optimal fluid volume strength existed,above which the single-well EUR increase rate kept decreasing.An optimized increase of SRV fracturing fluid volume and shut-in time would effectively increase the formation pressure and enhance well production.Field test results of well X-1 proved the practicality of established optimization method of SRV fracturing fluid volume strength on significant enhancement of shale oil well production.
基金supported by the China Postdoctoral Science Foundation(2021M702304)Natural Science Foundation of Shandong Province(ZR2021QE260).
文摘Continental shale oil reservoirs,characterized by numerous bedding planes and micro-nano scale pores,feature significantly higher stress sensitivity compared to other types of reservoirs.However,research on suitable stress sensitivity characterization models is still limited.In this study,three commonly used stress sensitivity models for shale oil reservoirs were considered,and experiments on representative core samples were conducted.By fitting and comparing the data,the“exponential model”was identified as a characterization model that accurately represents stress sensitivity in continental shale oil reservoirs.To validate the accuracy of the model,a two-phase seepage mathematical model for shale oil reservoirs coupled with the exponential model was introduced.The model was discretely solved using the finite volume method,and its accuracy was verified through the commercial simulator CMG.The study evaluated the productivity of a typical horizontal well under different engineering,geological,and fracture conditions.The results indicate that considering stress sensitivity leads to a 13.57%reduction in production for the same matrix permeability.Additionally,as the fracture half-length and the number of fractures increase,and the bottomhole flowing pressure decreases,the reservoir stress sensitivity becomes higher.
基金Supported by the National Science and Technology Major Project(2016ZX05023)。
文摘By systematically summarizing horizontal well fracturing technology abroad for shale oil and gas reservoirs since the “13th Five-Year Plan”, this article elaborates new horizontal well fracturing features in 3D development of stacked shale reservoirs, small well spacing and dense well pattern, horizontal well re-fracturing, fracturing parameters optimization and cost control. In light of requirements on horizontal well fracturing technology in China, we have summarized the technological progress in simulation of multi-fracture propagation, horizontal well frac-design, electric-drive fracturing equipment, soluble tools and low-cost downhole materials and factory-like operation. On this basis, combined with the demand analysis of horizontal well fracturing technology in the “14th Five-Year Plan” for unconventional shale oil and gas, we suggest strengthening the research and development in the following 7 aspects:(1) geology-engineering integration;(2) basic theory and design optimization of fracturing for shale oil and gas reservoirs;(3) development of high-power electric-drive fracturing equipment;(4) fracturing tool and supporting equipment for long horizontal section;(5) horizontal well flexible-sidetracking drilling technology for tapping remaining oil;(6) post-frac workover technology for long horizontal well;(7) intelligent fracturing technology.
基金funded by the CNPC Science and Technology Department Project(2021ZZ10-03)。
文摘Organic rich dark shale of Q Formation can be found in many areas(e.g.,in the North of S Basin).The shale target stratum is easy to hydrate and often undergoes spallation.Therefore,centering the casing in the horizontal section of the irregular borehole is relatively difficult.Similarly,achieving a good cementflushing efficiency under complex borehole conditions is a complex task.Through technologies such as centralizer,efficient preflushing,multi-stageflushing and ductile cement slurry,better performances can be achieved.In this study,it is shown that the cementing rate in the DY2H horizontal section is 97.8%,which is more than 34%higher than that of adjacent wells.This cementing matching technology for sidetracking horizontal wells can be used to improve the cementing quality of continental shale and provides a reference for future applications in thisfield.
基金Supported by the CNPC Basic and Prospective Project (2021DJ45)。
文摘The shale oil and gas exploitation in China is technically benchmarked with the United States in terms of development philosophy,reservoir stimulation treatment,fracturing parameters,fracturing equipment and materials,oil/gas production technology,and data/achievements sharing.It is recognized that the shale oil and gas exploitation in China is weak in seven aspects:understanding of flow regimes,producing of oil/gas reserves,monitoring of complex fractures,repeated stimulation technology,oil/gas production technology,casing deformation prevention technology,and wellbore maintenance technology.Combined with the geological and engineering factors of shale oil and gas in China,the development suggestions of four projects are proposed from the macro-and micro-perspective,namely,basic innovation project,exploitation technology project,oil/gas production stabilization project,and supporting efficiency-improvement project,so as to promote the rapid,efficient,stable,green and extensive development of shale oil and gas industry chain and innovation chain and ultimately achieve the goal of“oil volume stabilizing and gas volume increasing”.
基金supported by the company’s scientific research project“Study on Prediction Method of Liquid Carrying Capacity of Shale Gas Well with High Liquid-Gas Ratio”(Project No.20220303-05).
文摘Theflow behavior of shale gas horizontal wells is relatively complex,and this should be regarded as the main reason for which conventional pipeflow models are not suitable to describe the related dynamics.In this study,numerical simulations have been conducted to determine the gas-liquid distribution in these wells.In particular,using the measuredflow pressure data related to 97 groups of shale gas wells as a basis,9 distinct pipeflow models have been assessed,and the models displaying a high calculation accuracy for different water-gas ratio(WGR)ranges have been identified.The results show that:(1)The variation law of WGR in gas well satisfies a power function relation.(2)The well structure is the main factor affecting the gas-liquid distribution in the wellbore.(3)The Beggs&Brill,Hagedorn&Brown and Gray models exhibit a high calculation accuracy.
基金This work was supported by the National Natural Science Foundation of China(Grant No.52004237)Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance(Grant No.2020CX020202)the Sichuan Science and Technology Program(No.2022JDJQ0009).
文摘The production performances of a well with a shale gas reservoir displaying a complex fracture network are simulated.In particular,a micro-seismic cloud diagram is used to describe the fracture network,and accordingly,a production model is introduced based on a multi-scale flow mechanism.A finite volume method is then exploited for the integration of the model equations.The effects of apparent permeability,conductivity,Langmuir volume,and bottom hole pressure on gas well production are studied accordingly.The simulation results show that ignoring the micro-scale flow mechanism of the shale gas leads to underestimating the well gas production.It is shown that after ten years of production,the cumulative gas production difference between the two scenarios with and without considering the micro-scale flow mechanisms is 19.5%.The greater the fracture conductivity,the higher the initial gas production of the gas well and the cumulative gas production.The larger the Langmuir volume,the higher the gas production rate and the cumulative gas production.With the reduction of the bottom hole pressure,the cumulative gas production increases,but the growth rate gradually decreases.
基金supported by the National Science and Technology Major Project(No.2016ZX05061)the Project of Sinopec Science&Technology Department(No.P18057-2).
文摘The shale gas accumulation conditions in the basin-margin transition zone of southeastern Chongqing in SW China are complex.In order to improve single-well productivity in this area,the geologic characteristics,major factors controlling the occurrence of sweet spots,and drilling/fracturing optimization were investigated in this study.The sweet spot evaluation system and criteria were established,and the horizontal-well-design technology was developed.The following three conclusions were drawn.First,the accumulation and high-productivity-oriented approaches for sweet spot evaluation are proposed and the criteria are established based on screened key indicators.Second,the horizontal well was designed based on:(1)the“six-map”method,to identify both the geology and engineering sweet spots for well locations;and(2)seismic attributes,to predict the development of fractures and cavities,and thus,avoid mud loss and improve the drilling efficiency.The target window,well-azimuth optimization,and the curvature were forecasted to improve the fracturing performances.Third,the Pingqiao anticline,Dongsheng anticline,Jinfo slope,and Wulong syncline were selected as Type I sweet spots.Currently,shale gas has been successfully discovered in the basin-margin transition zone and is being commercially developed.
文摘For thin oil rim reservoir with gas cap and edge water, it is helpful to improve the development effect to find out the distribution law of remaining oil in this kind of reservoirs. For this reason, taking the narrow oil rim reservoir with gas cap and edge water of Oilfield A in Bohai Sea as a case, the main controlling factors, including reservoir structure, fault, gas cap energy, edge water energy and well pattern, affecting the distribution of residual oil in this kind of reservoir were analyzed by using the data of core, logging, paleogeomorphology and production. Then, the distribution law of remaining oil was summarized. Generally, the remaining oil distribution is mainly potato-shaped or strip-shaped in plane. Vertically, it depends on the energy of gas cap and edge water. For the reservoir with big gas gap and weak edge water, the remaining oil mainly lies in the bottom of oil column. And for the reservoir with small gas gap and strong edge water, the remaining oil mainly locates at the top of oil column. Aiming at different distribution modes of remaining oil, the corresponding potential tapping strategies of horizontal wells are put forward: in the late stage of development, for the reservoir with big gas gap and weak edge water, the remaining oil concentrates at the bottom of the oil column, and the position of horizontal well should be placed at the lower 1/3 to the lower 1/5 of the oil column;for the reservoir with small gas cap and strong edge water, the remaining oil locates at the top of the oil column, and the position of horizontal well should be put at the upper 1/5 to the upper 1/3 of the oil column height, vertically. Based on the study on remaining oil of Oilfield A, a potential tapping strategy of well pattern thickening and vertical position optimization of horizontal well was proposed. This strategy guided the efficient implementation of the comprehensive adjustment plan of the oilfield. Moreover, 18 infill development wells were implemented in Oilfield A, and the average production of the infill wells is 2.1 times that of the surrounding old wells. It is estimated that the ultimate recovery factor of the oilfield will reach 33.9%, which is 2.3% higher than that before infilling wells. This study can be used for reference in the development of similar reservoirs.
基金Supported by the PetroChina Science and Technology Major Project(2023ZZ04,2023ZZ08)。
文摘This paper reviews the basic research means for oilfield development and also the researches and tests of enhanced oil recovery(EOR)methods for mature oilfields and continental shale oil development,analyzes the problems of EOR methods,and proposes the relevant research prospects.The basic research means for oilfield development include in-situ acquisition of formation rock/fluid samples and non-destructive testing.The EOR methods for conventional and shale oil development are classified as improved water flooding(e.g.nano-water flooding),chemical flooding(e.g.low-concentration middle-phase micro-emulsion flooding),gas flooding(e.g.micro/nano bubble flooding),thermal recovery(e.g.air injection thermal-aided miscible flooding),and multi-cluster uniform fracturing/water-free fracturing,which are discussed in this paper for their mechanisms,approaches,and key technique researches and field tests.These methods have been studied with remarkable progress,and some achieved ideal results in field tests.Nonetheless,some problems still exist,such as inadequate research on mechanisms,imperfect matching technologies,and incomplete industrial chains.It is proposed to further strengthen the basic researches and expand the field tests,thereby driving the formation,promotion and application of new technologies.
基金Supported by the Key Fund Project of the National Natural Science Foundation of China and Joint Fund of Petrochemical Industry(Class A)(U1762212)National Natural Science Foundation of China(52274009)"14th Five-Year"Forward-looking and Fundamental Major Science and Technology Project of CNPC(2021DJ4402)。
文摘For the analysis of the formation damage caused by the compound function of drilling fluid and fracturing fluid,the prediction method for dynamic invasion depth of drilling fluid is developed considering the fracture extension due to shale minerals erosion by oil-based drilling fluid.With the evaluation for the damage of natural and hydraulic fractures caused by mechanical properties weakening of shale fracture surface,fracture closure and rock powder blocking,the formation damage pattern is proposed with consideration of the compound effect of drilling fluid and fracturing fluid.The formation damage mechanism during drilling and completion process in shale reservoir is revealed,and the protection measures are raised.The drilling fluid can deeply invade into the shale formation through natural and induced fractures,erode shale minerals and weaken the mechanical properties of shale during the drilling process.In the process of hydraulic fracturing,the compound effect of drilling fluid and fracturing fluid further weakens the mechanical properties of shale,results in fracture closure and rock powder shedding,and thus induces stress-sensitive damage and solid blocking damage of natural/hydraulic fractures.The damage can yield significant conductivity decrease of fractures,and restrict the high and stable production of shale oil and gas wells.The measures of anti-collapse and anti-blocking to accelerate the drilling of reservoir section,forming chemical membrane to prevent the weakening of the mechanical properties of shale fracture surface,strengthening the plugging of shale fracture and reducing the invasion range of drilling fluid,optimizing fracturing fluid system to protect fracture conductivity are put forward for reservoir protection.
基金SINOPEC's Scientific and Technological Research Project:Research on effective production strategies of Jurassic continental shale oil and gas(No.P21078-5).
文摘Pressure buildup testing can be used to analyze fracture network characteristics and conduct quantitative interpretation of relevant parameters for shale gas wells,thus providing bases for assessing the well productivity and formulating proper development strategies.This study establishes a new well test interpretation model for fractured horizontal wells based on seepage mechanisms of shale reservoirs and proposes a method for identifying fracturing patterns based on the characteristic slopes of pressure buildup curves and curve combination patterns.The pressure buildup curve patterns are identified to represent three types of shale reservoirs in the Sichuan Basin,namely the moderately deep shale reservoirs with high pressure,deep shale reservoirs with ultra-high pressure,and moderately deep shale reservoirs with normal pressure.Based on this,the relationship between the typical pressure buildup curve patterns and the fracture network types are put forward.Fracturing effects of three types of shale gas reservoir are compared and analyzed.The results show that typical flow patterns of shale reservoirs include bilinear flow in primary and secondary fractures,linear flow in secondary fractures,bilinear flow in secondary fractures and matrix,and linear flow in matrix.The fracture network characteristics can be determined using the characteristic slopes of pressure buildup curves and curve combinations.The linear flow in early secondary fractures is increasingly distinct with an increase in primary fracture conductivity.Moreover,the bilinear flow in secondary fractures and matrix and the subsequent linear flow in the matrix occur as the propping and density of secondary fractures increase.The increase in the burial depth,in-situ stress,and stress difference corresponds to a decrease in the propping of primary fractures that expand along different directions in the shale gas wells in the Sichuan Basin.Four pressure buildup curve patterns exist in the Sichuan Basin and its periphery.The pattern of pressure buildup curves of shale reservoirs in the Yongchuan area can be described as 1/2/→1/4,indicating limited stimulated reservoir volume,poorly propped secondary fractures,and the forming of primary fractures that extend only to certain directions.The pressure buildup curves of shale reservoirs in the main block of the Fuling area show a pattern of 1/4/→1/2 or 1/2,indicating greater stimulated reservoir volume,well propped secondary fractures,and the forming of complex fracture networks.The pattern of pressure buildup curves of shale reservoirs in the Pingqiao area is 1/2/→1/4→/1/2,indicating a fracturing effect somewhere between that of the Fuling and Yongchuan areas.For reservoirs with normal pressure,it is difficult to determine fracture network characteristics from pressure buildup curves due to insufficient formation energy and limited liquid drainage.
基金Supported by the National Natural Science Project of China(52274058)the Heilongjiang Province“Open Competition for Best Candidates”Projects(RIPED-2022-JS-1740,RIPED-2022-JS-1853).
文摘This paper reviews the multiple rounds of upgrades of the hydraulic fracturing technology used in the Gulong shale oil reservoirs and gives suggestions about stimulation technology development in relation to the production performance of Gulong shale oil wells.Under the control of high-density bedding fractures,fracturing in the Gulong shale results in a complex fracture morphology,yet with highly suppressed fracture height and length.Hydraulic fracturing fails to generate artificial fractures with sufficient lengths and heights,which is a main restraint on the effective stimulation in the Gulong shale oil reservoirs.In this regard,the fracturing design shall follow the strategy of"controlling near-wellbore complex fractures and maximizing the extension of main fractures"Increasing the proportions of guar gum fracturing fluids,reducing perforation clusters within one fracturing stage,raising pump rates and appropriately exploiting stress interference are conducive to fracture propagation and lead to a considerably expanded stimulated reservoir volume(SRV).The upgraded main hydraulic fracturing technology is much more applicable to the Gulong shale oil reservoirs.It accelerates the oil production with a low flowback rate and lifts oil cut during the initial production of well groups,which both help to improve well production.It is suggested to optimize the hydraulic fracturing technology in six aspects,namely,suppressing propagation of near-wellbore microfractures,improving the pumping scheme of CO_(2),managing the perforating density,enhancing multi-proppant combination,reviewing well pattern/spacing,and discreetly applying fiber-assisted injection,so as to improve the SRv,the distal fracture complexity and the long-term fracture conductivity.
基金the joint support from China Scholarship Council(201406450029)National Natural Science Foundation of China(Grant No.41504108)China Postdoctoral Science Foundation(Grant No.2015M582568)
文摘In order to analyze and compare the differences in pore structures between shale gas and shale oil formations, a few samples from the Longmaxi and Bakken Formations were collected and studied using X-ray diffraction, LECO TOC measurement, gas adsorption and field-emission scanning electron microscope. The results show that samples from the Bakken Formation have a higher TOC than those from the Longmaxi Formation. The Longmaxi Formation has higher micropore volume and larger micropore surface area and exhibited a smaller average distribution of microsize pores compared to the Bakken Formation. Both formations have similar meso-macropore volume. The Longmaxi Formation has a much larger meso-macropore surface area, which is corresponding to a smaller average meso-macropore size. CO_2 adsorption data processing shows that the pore size of the majority of the micropores in the samples from the Longmaxi Formation is less than 1 nm, while the pore size of the most of the micropores in the samples from the Bakken Formation is larger than 1 nm. Both formations have the same number of pore clusters in the 2–20 nm range, but the Bakken Formation has two additional pore size groups with mean pore size diameters larger than 20 nm. Multifractal analysis of pore size distribution curves that was derived from gas adsorption indicates that the samples from the Longmaxi Formation have more significant micropore heterogeneity and less meso-macropore heterogeneity. Abundant micropores as well as mesomacropores exist in the organic matter in the Longmaxi Formation, while the organic matter of the Bakken Formation hosts mainly micropores.
文摘As a milestone of the entire energy industry,unconventional resources have inevitably swept the world in the last decade,and will certainly dominate the global oil and gas industry in the near future.Eventually,the "unconventional" will become "conventional".Along with the rapid development,however,some issues have emerged,which are closely related to the viability of unconventional resources development.Under the current circumstances of low crude oil and gas price,coupled with the prominent environmental concerns,the arguments about the development and production of unconventional resources have been recently heated up.This work introduced the fullblown aspects of unconventional resources especially shale reservoirs,by discussing their concepts and definitions,reviewing the shale gas and shale oil development history and necessity,analyzing the shale plays' geology and petroleum systems with respects to key hydrocarbon accumulation elements and mechanisms,and summarizing the technology resolution.This study also discussed the relevant key issues,including significant estimation uncertainty of technically recoverable resources,the equivocal understanding of complex geology preventing the production and technologies implementation optimization,the difficulties of experiences and technologies global expanding,and the corresponding risks and uncertainties.In addition,based on the latest production and exploration data,the future perspective of the unconventional resources was depicted from global unconventional resources assessments,technology development,and limitations constraining the development.
文摘One of the important indicators of shale gas reservoir excavation is capacity evaluation,which directly affects whether large-scale shale gas reservoirs can be excavated.Capacity evaluation is the basis of system analysis and dynamic prediction.Therefore,it is particularly important to conduct capacity evaluation studies on shale gas horizontal wells.In order to accurately evaluate the horizontal well productivity of shale gas staged fracturing,this paper uses a new method to evaluate the productivity of Fuling shale gas.The new method is aimed at the dynamic difference of horizontal wells and effectively analyzes the massive data,which are factors affecting the productivity of shale gas horizontal wells.According to the pressure system,production dynamic characteristics,well trajectory position,fracturing transformation mode and penetration depth,32 wells were divided into four types.Then,based on the classification,the principal component analysis methods can be used to evaluate the horizontal well productivity of shale gas.The new method of capacity evaluation has improved the accuracy by 10.25%compared with the traditional method,which provides a theoretical basis for guiding the efficient development of the horizontal wells of Fuling shale gas.
基金This research was financially supported by the National Science and Technology Major Project(2016ZX05034)project of China Gelogical Survey(DD20160181).
文摘In order to evaluate the geological characteristics and gas-bearing factors of Niutitang Formation within the Lower Cambrian of northern Guizhou,the Huangping area located at the southern edge of the ancient uplift belt of Xuefeng Mountain was selected as the target area,and Well Huangdi 1 was drilled for the geological survey of shale gas.Through geological background analysis and well logging and laboratory analysis such as organic geochemical test,gas content analysis,isothermal adsorption,and specific surface area experiments on Well Huangdi 1,the results show that the Niutitang Formation is a deep-water shelf,trough-like folds and thrust fault.The thickness of black shale is 119.95 m,of which carbonaceous shale is 89.6 m.The average value of organic carbon content is 3.55%,kerogen vitrinite reflectance value is 2.37% and kerogen type is sapropel-type.The brittle mineral content is 51%(quartz 38%),clay mineral content is 38.3%.The value of porosity and permeability are 0.5%and 0.0014 mD,which the reservoir of the Niutitang Formation belongs to low permeability with characteristics of ultra-low porosity.The gas content is 0.09‒1.31 m^3/t with a high-value area and a second high-value area.By comparing with the geological parameters of adjacent wells in the adjacent area,the accumulation model of“sediment control zone,Ro control zone,structure controlling reservoir”in the study area is proposed.Therefore,deep-water shelf-slope facies,Ro is between high maturity-early stage of overmaturity and well-preserved zones in the Niutitang Formation in this area are favorable direction for the next step of shale gas exploration.