A comprehensive study was undertaken at Jiaozi coal mine to investigate the development regularity of ground fissures in shallow buried coal seam mining with Karst landform,shedding light on the development type,geogr...A comprehensive study was undertaken at Jiaozi coal mine to investigate the development regularity of ground fissures in shallow buried coal seam mining with Karst landform,shedding light on the development type,geographical distribution,dynamic development process,and failure mechanism of these ground fissures by employing field monitoring,numerical simulation,and theoretical analysis.The findings demonstrate that ground fissure development has an obvious feature of subregion,and its geographical distribution is significantly affected by topography.Tensile type,open type,and stepped type are three different categories of ground fissure.Ground fissures emerge dynamically as the panel advances,and they typically develop with a distance of less than periodic weighting step distance in advance of panel advancing position.Ground fissures present the dynamic development feature,temporary fissure has the ability of self-healing.The dynamic development process of ground fissure with closed-distance coal seam repeated mining is expounded,and the development scale is a dynamic development stage of“closure→expansion→stabilized”on the basis of the original development scale.From the perspective of topsoil deformation,the computation model considering two points movement vectors towards two directions of the gob and the ground surface is established,the development criterion considering the critical deformation value of topsoil is obtained.The mechanical model of hinged structure of inclined body is proposed to clarify the ground fissure development,and the interaction between slope activity and ground fissure development is expounded.These research results fulfill the gap of ground fissures about development regularity and formation mechanism,and can contribute to ground fissure prevention and treatment with Karst landform.展开更多
A series of researches on mechanical behaviors of big pipe roof for shallow large-span loess tunnel were carried out based on the Wenxiang tunnel in Zhengzhou—Xi'an Special Passenger Railway. The longitudinal def...A series of researches on mechanical behaviors of big pipe roof for shallow large-span loess tunnel were carried out based on the Wenxiang tunnel in Zhengzhou—Xi'an Special Passenger Railway. The longitudinal deformations of the pipe roofs were monitored and the mechanical behaviors of the pipe roofs were analyzed at the test section. A new double-parameter elastic foundation beam model for pipe roof in shallow tunnels was put forward in Wenxiang tunnel. The measured values and the calculation results agreed well with each other,revealing the force-deformation law of big pipe roof in loess tunnel:At about 15 m in front of the excavating face,the pipe roof starts to bear the load;at about 15 m behind the excavating face,the force of the pipe roof tends to be stabilized;the longitudinal deformation of the whole pipe roofs is groove-shaped distribution,and the largest force of pipe roofs is at the excavating face. Simultaneously,the results also indicate that mechanical behaviors of pipe roof closely relate to the location of the excavation face,the footage of the tunnelling cycle and the mechanics parameters of pipe roof and rock. The conclusions can be reference for the design parameter optimization and the construction scheme selection of pipe roofs,and have been verified by the result of numerical analysis software FLAC3Dand deformation monitoring.展开更多
As a major element of the transportation network,tunnels are unavoidably threatened by accidental loads such as vehicle bombs and tank truck explosions.The goal of this research is to explore the dynamic characteristi...As a major element of the transportation network,tunnels are unavoidably threatened by accidental loads such as vehicle bombs and tank truck explosions.The goal of this research is to explore the dynamic characteristics and damage assessment of tunnel structures under contact blast loads.First,three scaled-down reinforced concrete tunnel models were made,and the explosion test and static loading test were carried out successively to evaluate the axial residual bearing capacity,axial displacement and failure mechanism of the tunnel.Secondly,the finite element model is built by utilizing LS-DYNA,and the reliability of the finite element method is confirmed by comparing the data of the explosion test with the static loading test.At the same time,the calculation method for damage coefficient and the classification criteria for damage grade based on axial residual bearing capacity are presented.Then,based on the finite element method,the propagation process of the explosion shock wave in the tunnel and the damage mechanism of the tunnel are investigated.Finally,seven explosion scenarios are developed,the damage degree of these seven tunnels under the blast load is quantitatively analyzed,and further anti-blast design ideas are put forth.The study in this article may give an intended reference for the damage assessment,anti-explosion design and strengthening work of reinforced concrete tunnels.展开更多
Upheaval buckling of pipelines can occur under thermal expansion and differential ground settlement.Research on this phenomenon has usually assumed the pipes are buried in horizontal ground.For long-distance transmiss...Upheaval buckling of pipelines can occur under thermal expansion and differential ground settlement.Research on this phenomenon has usually assumed the pipes are buried in horizontal ground.For long-distance transmission pipelines across mountainous areas,the ground surface is commonly inclined.Based on the Rankine earth pressure theory and Mohr-Coulomb failure criterion,analytical formulae for calculating the peak uplift resistance and the slip surface angles for a buried pipe in inclined ground are presented in this paper.Analyses indicate that the slip surfaces in inclined ground are asymmetric and rotate towards the downhill side.Under a shallow burial depth,the failure plane angle is highly impacted by the ground inclination.When the embedment ratio(H/D)is more than 4,the influence of the ground slope on the failure plane angle is negligible.The peak uplift resistance reduces in inclined ground,especially when H/D is less than 1.Finally,a simple equation considering the impact of ground inclination is proposed to predict the peak uplift resistance.展开更多
By combining the results of laboratory model tests with relevant flow rules, the failure mode of shallow unsymmetrical loading tunnels and the corresponding velocity field were established. According to the principle ...By combining the results of laboratory model tests with relevant flow rules, the failure mode of shallow unsymmetrical loading tunnels and the corresponding velocity field were established. According to the principle of virtual power, the upper bound solution for surrounding rock pressure of shallow unsymmetrical loading tunnel was derived and verified by an example. The results indicate that the calculated results of the derived upper bound method for surrounding rock pressure of shallow unsymmetrical loading tunnels are relatively close to those of the existing "code method" and test results, which means that the proposed method is feasible. The current code method underestimates the unsymmetrical loading feature of surrounding rock pressure of shallow unsymmetrical loading tunnels, so it is unsafe; when the burial depth is less or greater than two times of the tunnel span and the unsymmetrical loading angle is less than 45°, the upper bound method or the average value of the results calculated by the upper bound method and code method respectively, is comparatively reasonable. When the burial depth is greater than two times of the tunnel span and the unsymmetrical loading angle is greater than 45°, the code method is more suitable.展开更多
Electrical resistivity tomography (ERT) has been used to experimentally detect shallow buried faults in urban areas in the past a few years, with some progress and experience obtained. According to the results from Ol...Electrical resistivity tomography (ERT) has been used to experimentally detect shallow buried faults in urban areas in the past a few years, with some progress and experience obtained. According to the results from Olympic Park, Beijing, Shandong Province, Gansu Province and Shanxi Province, we have generalized the method and procedure for inferring the discontinuity of electrical structures (DES) indicating a buried fault in urban areas from resistivity tomograms and its typical electrical features. In general, the layered feature of the electrical structure is first analyzed to preliminarily define whether or not a DES exists in the target area. Resistivity contours in resistivity tomograms are then analyzed from the deep to the shallow. If they extend upward from the deep to the shallow and shape into an integral dislocation, sharp flexure (convergence) or gradient zone, it is inferred that the DES exists, indicating a buried fault. Finally, horizontal tracing is be carried out to define the trend of the DES. The DES can be divided into three types-type AB, ABA and AC. In the present paper, the Zhangdian-Renhe fault system in Zibo city is used as an example to illustrate how to use the method to infer the location and spatial extension of a target fault. Geologic drilling holes are placed based on our research results, and the drilling logs testify that our results are correct. However, the method of this paper is not exclusive and inflexible. It is expected to provide reference and assistance for inferring the shallow buried faults in urban areas from resistivity tomograms in the future.展开更多
Now the surface settlement induced by shallow buried tunnel to under-traverse highway,mostly adopt the empirical value,3 cm,acquired from Beijing or Shenzhen metro,which is regarded as the controlling standard.But to ...Now the surface settlement induced by shallow buried tunnel to under-traverse highway,mostly adopt the empirical value,3 cm,acquired from Beijing or Shenzhen metro,which is regarded as the controlling standard.But to more project,tunnel under-traverse highway,we must decide the controlling standard flexibly,which should base on the pavement service function and the pavement condition.The thesis,based on the pavement evenness and running comfort ability in the view of completing the pavement service function,supposes the longitudinal pavement settlement cross section as a quadratic parabola,and gets the maximal settlement value in the range of longitudinal pavement influence when the tunnel is under-traverse highway perpendicularly.Then the controlling standard is decided.As Wenxiang Tunnel under-traverse Lianhuo Freeway on Zhengzhou-Xi'an Passenger Dedicated Railway Line for an example,the settlement controlling standard is acquired,and we hope it has an direction and reference value to similar tunnel construction.展开更多
The potential submarine geologic hazards were distinguished and categorized at the entrance of the Pearl River Estuary in the northern South China Sea, based upon the analysis of side scan sonar and sub-bottom profile...The potential submarine geologic hazards were distinguished and categorized at the entrance of the Pearl River Estuary in the northern South China Sea, based upon the analysis of side scan sonar and sub-bottom profiler surveying data of about 2500 km long, in an area about 2000 km^2 around the Wanshan Archipelago. The data obtained in the survey has the highest spatial resolution by far, which could reveal more detailed distributions and characteristics of the geologic hazards than before. In the study region, three paleo-channels that were buried about 10–30 m below the seabed were found; more than 10 shallow gas areas were discovered. The sand waves found in the region were generally small and located near the islands, and twenty pockmarks found on the seabed were mostly concentrated to north of Zhuzhou island. There are also many man-made obstacles in the region, such as wreckages, pipeline, etc. In this paper we provide a detailed distribution map of the submarine geologic hazards in this region for the first time, and discuss their formation and harmfulness, which will provide a scientific basis for marine engineering construction, marine geologic disaster prevention and mitigation.展开更多
基金funded by State Key Laboratory of Strata Intelligent Control and Green Mining Cofounded by Shandong Province and the Ministry of Science and Technology,Shandong University of Science and Technology(Grant No.MDPC2023ZR01)Open Fund of State Key Laboratory of Water Resource Protection and Utilization in Coal Mining(Grant No.WPUKFJJ2019-19)Major research project of Guizhou Provincial Department of Education on innovative groups(Grant No.Qianjiaohe KY[2019]070)。
文摘A comprehensive study was undertaken at Jiaozi coal mine to investigate the development regularity of ground fissures in shallow buried coal seam mining with Karst landform,shedding light on the development type,geographical distribution,dynamic development process,and failure mechanism of these ground fissures by employing field monitoring,numerical simulation,and theoretical analysis.The findings demonstrate that ground fissure development has an obvious feature of subregion,and its geographical distribution is significantly affected by topography.Tensile type,open type,and stepped type are three different categories of ground fissure.Ground fissures emerge dynamically as the panel advances,and they typically develop with a distance of less than periodic weighting step distance in advance of panel advancing position.Ground fissures present the dynamic development feature,temporary fissure has the ability of self-healing.The dynamic development process of ground fissure with closed-distance coal seam repeated mining is expounded,and the development scale is a dynamic development stage of“closure→expansion→stabilized”on the basis of the original development scale.From the perspective of topsoil deformation,the computation model considering two points movement vectors towards two directions of the gob and the ground surface is established,the development criterion considering the critical deformation value of topsoil is obtained.The mechanical model of hinged structure of inclined body is proposed to clarify the ground fissure development,and the interaction between slope activity and ground fissure development is expounded.These research results fulfill the gap of ground fissures about development regularity and formation mechanism,and can contribute to ground fissure prevention and treatment with Karst landform.
基金Major Science and Technology R&D Program of Ministry of Railways(No.2005K001-D(G)-2)
文摘A series of researches on mechanical behaviors of big pipe roof for shallow large-span loess tunnel were carried out based on the Wenxiang tunnel in Zhengzhou—Xi'an Special Passenger Railway. The longitudinal deformations of the pipe roofs were monitored and the mechanical behaviors of the pipe roofs were analyzed at the test section. A new double-parameter elastic foundation beam model for pipe roof in shallow tunnels was put forward in Wenxiang tunnel. The measured values and the calculation results agreed well with each other,revealing the force-deformation law of big pipe roof in loess tunnel:At about 15 m in front of the excavating face,the pipe roof starts to bear the load;at about 15 m behind the excavating face,the force of the pipe roof tends to be stabilized;the longitudinal deformation of the whole pipe roofs is groove-shaped distribution,and the largest force of pipe roofs is at the excavating face. Simultaneously,the results also indicate that mechanical behaviors of pipe roof closely relate to the location of the excavation face,the footage of the tunnelling cycle and the mechanics parameters of pipe roof and rock. The conclusions can be reference for the design parameter optimization and the construction scheme selection of pipe roofs,and have been verified by the result of numerical analysis software FLAC3Dand deformation monitoring.
基金supported by the National Natural Science Foundation of China(Grant No.51678018).
文摘As a major element of the transportation network,tunnels are unavoidably threatened by accidental loads such as vehicle bombs and tank truck explosions.The goal of this research is to explore the dynamic characteristics and damage assessment of tunnel structures under contact blast loads.First,three scaled-down reinforced concrete tunnel models were made,and the explosion test and static loading test were carried out successively to evaluate the axial residual bearing capacity,axial displacement and failure mechanism of the tunnel.Secondly,the finite element model is built by utilizing LS-DYNA,and the reliability of the finite element method is confirmed by comparing the data of the explosion test with the static loading test.At the same time,the calculation method for damage coefficient and the classification criteria for damage grade based on axial residual bearing capacity are presented.Then,based on the finite element method,the propagation process of the explosion shock wave in the tunnel and the damage mechanism of the tunnel are investigated.Finally,seven explosion scenarios are developed,the damage degree of these seven tunnels under the blast load is quantitatively analyzed,and further anti-blast design ideas are put forth.The study in this article may give an intended reference for the damage assessment,anti-explosion design and strengthening work of reinforced concrete tunnels.
基金Project supported by the National Natural Science Foundation of China(Nos.51988101 and 51178427)the Natural Science Foundation of Zhejiang Province(No.LCZ19E080002)the Fundamental Research Funds for the Central Universities(No.2019FZA4016),China。
文摘Upheaval buckling of pipelines can occur under thermal expansion and differential ground settlement.Research on this phenomenon has usually assumed the pipes are buried in horizontal ground.For long-distance transmission pipelines across mountainous areas,the ground surface is commonly inclined.Based on the Rankine earth pressure theory and Mohr-Coulomb failure criterion,analytical formulae for calculating the peak uplift resistance and the slip surface angles for a buried pipe in inclined ground are presented in this paper.Analyses indicate that the slip surfaces in inclined ground are asymmetric and rotate towards the downhill side.Under a shallow burial depth,the failure plane angle is highly impacted by the ground inclination.When the embedment ratio(H/D)is more than 4,the influence of the ground slope on the failure plane angle is negligible.The peak uplift resistance reduces in inclined ground,especially when H/D is less than 1.Finally,a simple equation considering the impact of ground inclination is proposed to predict the peak uplift resistance.
基金Project(2014M560652)supported by China Postdoctoral Science FoundationProjects(2011CB013802,2013CB036004)supported by the National Basic Research Program of China
文摘By combining the results of laboratory model tests with relevant flow rules, the failure mode of shallow unsymmetrical loading tunnels and the corresponding velocity field were established. According to the principle of virtual power, the upper bound solution for surrounding rock pressure of shallow unsymmetrical loading tunnel was derived and verified by an example. The results indicate that the calculated results of the derived upper bound method for surrounding rock pressure of shallow unsymmetrical loading tunnels are relatively close to those of the existing "code method" and test results, which means that the proposed method is feasible. The current code method underestimates the unsymmetrical loading feature of surrounding rock pressure of shallow unsymmetrical loading tunnels, so it is unsafe; when the burial depth is less or greater than two times of the tunnel span and the unsymmetrical loading angle is less than 45°, the upper bound method or the average value of the results calculated by the upper bound method and code method respectively, is comparatively reasonable. When the burial depth is greater than two times of the tunnel span and the unsymmetrical loading angle is greater than 45°, the code method is more suitable.
基金The project entitled "Urban Active Fault Surveying Project"(143623) funded by the National Development and Roform Commission of China"Active Faults Exploration and Seismic Hazard Assessment in Zibo City"(SD1501) funded by the Department of Science & Technology of Shangdong Province,China
文摘Electrical resistivity tomography (ERT) has been used to experimentally detect shallow buried faults in urban areas in the past a few years, with some progress and experience obtained. According to the results from Olympic Park, Beijing, Shandong Province, Gansu Province and Shanxi Province, we have generalized the method and procedure for inferring the discontinuity of electrical structures (DES) indicating a buried fault in urban areas from resistivity tomograms and its typical electrical features. In general, the layered feature of the electrical structure is first analyzed to preliminarily define whether or not a DES exists in the target area. Resistivity contours in resistivity tomograms are then analyzed from the deep to the shallow. If they extend upward from the deep to the shallow and shape into an integral dislocation, sharp flexure (convergence) or gradient zone, it is inferred that the DES exists, indicating a buried fault. Finally, horizontal tracing is be carried out to define the trend of the DES. The DES can be divided into three types-type AB, ABA and AC. In the present paper, the Zhangdian-Renhe fault system in Zibo city is used as an example to illustrate how to use the method to infer the location and spatial extension of a target fault. Geologic drilling holes are placed based on our research results, and the drilling logs testify that our results are correct. However, the method of this paper is not exclusive and inflexible. It is expected to provide reference and assistance for inferring the shallow buried faults in urban areas from resistivity tomograms in the future.
文摘Now the surface settlement induced by shallow buried tunnel to under-traverse highway,mostly adopt the empirical value,3 cm,acquired from Beijing or Shenzhen metro,which is regarded as the controlling standard.But to more project,tunnel under-traverse highway,we must decide the controlling standard flexibly,which should base on the pavement service function and the pavement condition.The thesis,based on the pavement evenness and running comfort ability in the view of completing the pavement service function,supposes the longitudinal pavement settlement cross section as a quadratic parabola,and gets the maximal settlement value in the range of longitudinal pavement influence when the tunnel is under-traverse highway perpendicularly.Then the controlling standard is decided.As Wenxiang Tunnel under-traverse Lianhuo Freeway on Zhengzhou-Xi'an Passenger Dedicated Railway Line for an example,the settlement controlling standard is acquired,and we hope it has an direction and reference value to similar tunnel construction.
基金supported by the Key Laboratory of Marginal Sea Geology, Chinese Academy of Sciences (No.MSGL13-03)
文摘The potential submarine geologic hazards were distinguished and categorized at the entrance of the Pearl River Estuary in the northern South China Sea, based upon the analysis of side scan sonar and sub-bottom profiler surveying data of about 2500 km long, in an area about 2000 km^2 around the Wanshan Archipelago. The data obtained in the survey has the highest spatial resolution by far, which could reveal more detailed distributions and characteristics of the geologic hazards than before. In the study region, three paleo-channels that were buried about 10–30 m below the seabed were found; more than 10 shallow gas areas were discovered. The sand waves found in the region were generally small and located near the islands, and twenty pockmarks found on the seabed were mostly concentrated to north of Zhuzhou island. There are also many man-made obstacles in the region, such as wreckages, pipeline, etc. In this paper we provide a detailed distribution map of the submarine geologic hazards in this region for the first time, and discuss their formation and harmfulness, which will provide a scientific basis for marine engineering construction, marine geologic disaster prevention and mitigation.