The natural gas generation process is simulated by heating source rocks of the Yacheng Formation, including the onshore-offshore mudstone and coal with kerogens of Type II2-III in the Qiongdongnan Basin. The aim is to...The natural gas generation process is simulated by heating source rocks of the Yacheng Formation, including the onshore-offshore mudstone and coal with kerogens of Type II2-III in the Qiongdongnan Basin. The aim is to quantify the natural gas generation from the Yacheng Formation and to evaluate the geological prediction and kinetic parameters using an optimization procedure based on the basin modeling of the shallow-water area. For this, the hydrocarbons produced have been grouped into four classes(C1, C2, C3 and C4-6). The results show that the onset temperature of methane generation is predicted to occur at 110℃ during the thermal history of sediments since 5.3 Ma by using data extrapolation. The hydrocarbon potential for ethane, propane and heavy gaseous hydrocarbons(C4-6) is found to be almost exhausted at geological temperature of 200℃ when the transformation ratio(TR) is over 0.8, but for which methane is determined to be about 0.5 in the shallow-water area. In contrast, the end temperature of the methane generation in the deep-water area was over 300℃ with a TR over 0.8. It plays an important role in the natural gas exploration of the deep-water basin and other basins in the broad ocean areas of China. Therefore, the natural gas exploration for the deep-water area in the Qiongdongnan Basin shall first aim at the structural traps in the Ledong, Lingshui and Beijiao sags, and in the forward direction of the structure around the sags, and then gradually develop toward the non-structural trap in the deep-water area basin of the broad ocean areas of China.展开更多
Based on a combination of high resolution 3-D seismic, drilling and well logging and core data, this study focuses on describing the depositional features of the Neogene Minghuazhen Formation shallow water delta in Hu...Based on a combination of high resolution 3-D seismic, drilling and well logging and core data, this study focuses on describing the depositional features of the Neogene Minghuazhen Formation shallow water delta in Huanghekou area(HHKA), Bohai offshore basin and discussing the evolution and controlling factors of shallow water delta sandbody. An obvious meandering fluvial delta system developed in sequence 1(SQ1) of the Neogene in HHKA with thinner sandbody of distributary channels and poor development of mouth bar. The sequence texture obviously influences the vertical development and stacking pattern of sandbodies and controls the distribution of sandbodies in plain view as well. In shallow water lacustrine basins, relative topographic height difference leads to change of distribution of accommodation space, and sandbodies of distributary channels usually develop well in local low-lying areas where accommodation space increases. The delta is dominated by distributary channel sandbodies during the early period of base level rising. Sandbodies contact with each other in a lateral stacking pattern and are characterized by a fan shape in plain view. Distributary channels gradually narrow and tend to shift during the mid-late-period of base level rising, while the sandbodies are characterized by a net shape in plain view. During the period of base level slow falling, the multistory/multilateral channel sandbodies dominated the inner front of shallow-water delta and the delta sand dispersal distributes as a lobe shape.展开更多
According to the characteristics of sedimentary microfacies, unique vertical depositional sequences and well logging response, the authors propose that a shallow water delta was widely developed in the Neogene of the ...According to the characteristics of sedimentary microfacies, unique vertical depositional sequences and well logging response, the authors propose that a shallow water delta was widely developed in the Neogene of the Laibei area, Bohai Bay Basin of northern China. Based on seismic minimum amplitude slices, well logging data, test analytical data and so forth, detailed research on the evolution of the shallow water delta of the Neogene Lower Member of Minghuazhen Formation was conducted. The results indicate that the third-order sequence base level controls sandbody types. During a period of low base level, a distribu- tary channel sandbody of shallow water deltaic plain was developed. With base level rising, the sandbody type gradually changed into a subaqueous distributary channel sandbody and a sheet sand can be found as well. The fourth-order sequence base level controls mediumshort term evolution of the sandbody. Within a sequence, due to the rising and falling of base level, the sandbody assemblages are identified as an upward-coarsening type, an upwardfining and a compound type respectively. Regionally, from the Laibei Low Uplift to the Huang- hekou Sag, the shallow water delta evoluted from a dendritic shape, to a cuspate shape and finally to a sheet shape.展开更多
The global exploration investment, new oil and gas discoveries, exploration business adjustment strategies of oil companies in 2021, and future favorable exploration domains are systematically analyzed using commercia...The global exploration investment, new oil and gas discoveries, exploration business adjustment strategies of oil companies in 2021, and future favorable exploration domains are systematically analyzed using commercial databases such as IHS and public information of oil companies. It has been found that the world oil and gas exploration situation in 2021 has continued the downturn since the outbreak of COVID-19. The investment and drilling workload decreased slightly, but the success rate of exploration wells, especially deepwater exploration wells, increased significantly, and the newly discovered reserves increased slightly compared with last year. Deep waters of the passive continental margin basins are still the leading sites for discovering conventional large and medium-sized oil and gas fields. The conventional oil and gas exploration in deep formations of onshore petroliferous basins has been keeping a good state, with tight/shale oil and gas discoveries made in Saudi Arabia, Russia, and other countries. While strengthening the exploration and development of local resources, national, international, and independent oil companies have been focusing on major overseas frontiers using their advantages, including risk exploration in deep waters and natural gas. Future favorable exploration directions in the three major frontiers, the global deep waters, deep onshore formations, and unconventional resources, have been clarified. Four suggestions are put forward for the global exploration business of Chinese oil companies: first, a farm in global deepwater frontier basins in advance through bidding at a low cost and adopt the “dual exploration model” after making large-scale discoveries;second, enter new blocks of emerging hot basins in the world through farm-in and other ways, to find large oil and gas fields quickly;third, cooperate with national oil companies of the resource host countries in the form of joint research and actively participate exploration of deep onshore formations of petroliferous basins;fourth, track tight/shale oil and gas cooperation opportunities in a few countries such as Saudi Arabia and Russia, and take advantage of mature domestic theories and technologies to farm in at an appropriate time.展开更多
基金The Western Light Talent Culture Project of the Chinese Academy of Sciences under contract No.Y404RC1the National Petroleum Major Projects of China under contract No.2016ZX05026-007-005+2 种基金the Key Laboratory of Petroleum Resources Research Fund of the Chinese Academy of Sciences under contract No.KFJJ2013-04the Science and Technology Program of Gansu Province under contract No.1501RJYA006the Key Laboratory Project of Gansu Province of China under contract No.1309RTSA041
文摘The natural gas generation process is simulated by heating source rocks of the Yacheng Formation, including the onshore-offshore mudstone and coal with kerogens of Type II2-III in the Qiongdongnan Basin. The aim is to quantify the natural gas generation from the Yacheng Formation and to evaluate the geological prediction and kinetic parameters using an optimization procedure based on the basin modeling of the shallow-water area. For this, the hydrocarbons produced have been grouped into four classes(C1, C2, C3 and C4-6). The results show that the onset temperature of methane generation is predicted to occur at 110℃ during the thermal history of sediments since 5.3 Ma by using data extrapolation. The hydrocarbon potential for ethane, propane and heavy gaseous hydrocarbons(C4-6) is found to be almost exhausted at geological temperature of 200℃ when the transformation ratio(TR) is over 0.8, but for which methane is determined to be about 0.5 in the shallow-water area. In contrast, the end temperature of the methane generation in the deep-water area was over 300℃ with a TR over 0.8. It plays an important role in the natural gas exploration of the deep-water basin and other basins in the broad ocean areas of China. Therefore, the natural gas exploration for the deep-water area in the Qiongdongnan Basin shall first aim at the structural traps in the Ledong, Lingshui and Beijiao sags, and in the forward direction of the structure around the sags, and then gradually develop toward the non-structural trap in the deep-water area basin of the broad ocean areas of China.
基金supported by the National Science and Technology Major Project(Exploration Technologies for Offshore Subtle Oil/Gas)(project no.:2016ZX05024–003-003)the Fundamental Research Funds for the Central Universities for support
文摘Based on a combination of high resolution 3-D seismic, drilling and well logging and core data, this study focuses on describing the depositional features of the Neogene Minghuazhen Formation shallow water delta in Huanghekou area(HHKA), Bohai offshore basin and discussing the evolution and controlling factors of shallow water delta sandbody. An obvious meandering fluvial delta system developed in sequence 1(SQ1) of the Neogene in HHKA with thinner sandbody of distributary channels and poor development of mouth bar. The sequence texture obviously influences the vertical development and stacking pattern of sandbodies and controls the distribution of sandbodies in plain view as well. In shallow water lacustrine basins, relative topographic height difference leads to change of distribution of accommodation space, and sandbodies of distributary channels usually develop well in local low-lying areas where accommodation space increases. The delta is dominated by distributary channel sandbodies during the early period of base level rising. Sandbodies contact with each other in a lateral stacking pattern and are characterized by a fan shape in plain view. Distributary channels gradually narrow and tend to shift during the mid-late-period of base level rising, while the sandbodies are characterized by a net shape in plain view. During the period of base level slow falling, the multistory/multilateral channel sandbodies dominated the inner front of shallow-water delta and the delta sand dispersal distributes as a lobe shape.
基金the National Science and Technology Major Project (Exploration Technologies for Offshore Hidden Oil/Gas) (Project No.: 2011ZX05023-00205) for financial support
文摘According to the characteristics of sedimentary microfacies, unique vertical depositional sequences and well logging response, the authors propose that a shallow water delta was widely developed in the Neogene of the Laibei area, Bohai Bay Basin of northern China. Based on seismic minimum amplitude slices, well logging data, test analytical data and so forth, detailed research on the evolution of the shallow water delta of the Neogene Lower Member of Minghuazhen Formation was conducted. The results indicate that the third-order sequence base level controls sandbody types. During a period of low base level, a distribu- tary channel sandbody of shallow water deltaic plain was developed. With base level rising, the sandbody type gradually changed into a subaqueous distributary channel sandbody and a sheet sand can be found as well. The fourth-order sequence base level controls mediumshort term evolution of the sandbody. Within a sequence, due to the rising and falling of base level, the sandbody assemblages are identified as an upward-coarsening type, an upwardfining and a compound type respectively. Regionally, from the Laibei Low Uplift to the Huang- hekou Sag, the shallow water delta evoluted from a dendritic shape, to a cuspate shape and finally to a sheet shape.
基金Petro China Scientific Research and Technology Development Project(2021DJ3101,2022-FW-041)。
文摘The global exploration investment, new oil and gas discoveries, exploration business adjustment strategies of oil companies in 2021, and future favorable exploration domains are systematically analyzed using commercial databases such as IHS and public information of oil companies. It has been found that the world oil and gas exploration situation in 2021 has continued the downturn since the outbreak of COVID-19. The investment and drilling workload decreased slightly, but the success rate of exploration wells, especially deepwater exploration wells, increased significantly, and the newly discovered reserves increased slightly compared with last year. Deep waters of the passive continental margin basins are still the leading sites for discovering conventional large and medium-sized oil and gas fields. The conventional oil and gas exploration in deep formations of onshore petroliferous basins has been keeping a good state, with tight/shale oil and gas discoveries made in Saudi Arabia, Russia, and other countries. While strengthening the exploration and development of local resources, national, international, and independent oil companies have been focusing on major overseas frontiers using their advantages, including risk exploration in deep waters and natural gas. Future favorable exploration directions in the three major frontiers, the global deep waters, deep onshore formations, and unconventional resources, have been clarified. Four suggestions are put forward for the global exploration business of Chinese oil companies: first, a farm in global deepwater frontier basins in advance through bidding at a low cost and adopt the “dual exploration model” after making large-scale discoveries;second, enter new blocks of emerging hot basins in the world through farm-in and other ways, to find large oil and gas fields quickly;third, cooperate with national oil companies of the resource host countries in the form of joint research and actively participate exploration of deep onshore formations of petroliferous basins;fourth, track tight/shale oil and gas cooperation opportunities in a few countries such as Saudi Arabia and Russia, and take advantage of mature domestic theories and technologies to farm in at an appropriate time.