期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A two-step multi-frequency receiver function inversion method for shallow crustal S-wave velocity structure and its application across the basin-mountain range belts in Northeast China
1
作者 Ruihao YANG Xu WANG +2 位作者 Ling CHEN Mingye FENG Qifu CHEN 《Science China Earth Sciences》 SCIE EI CAS CSCD 2024年第3期687-703,共17页
A shallow crustal velocity structure(above 10 km depth) is essential for understanding the crustal structures and deformation and assessing the exploration prospect of natural resources, and also provides priori infor... A shallow crustal velocity structure(above 10 km depth) is essential for understanding the crustal structures and deformation and assessing the exploration prospect of natural resources, and also provides priori information for imaging deeper crustal and mantle structure. Passive-source seismic methods are cost-effective and advantageous for regional-scale imaging of shallow crustal structures compared to active-source methods. Among these passive methods, techniques utilizing receiver function waveforms and/or body-wave amplitude ratios have recently gained prominence due to their relatively high spatial resolution. However, in basin regions, reverberations caused by near-surface unconsolidated sedimentary layers often introduce strong non-uniqueness and uncertainty, limiting the applicability of such methods. To address these challenges, we propose a two-step inversion method that uses multi-frequency P-RF waveforms and P-RF horizontal-to-vertical amplitude ratios. Synthetic tests indicate that our two-step inversion method can mitigate the non-uniqueness of the inversion and enhance the stability of the results. Applying this method to teleseismic data from a linear seismic array across the sedimentary basins in Northeast China, we obtain a high-resolution image of the shallow crustal S-wave velocity structure along the array. Our results reveal significant differences between the basins and mountains. The identification of low-velocity anomalies(<2.8 km s^(-1)) at depths less than 1.0 km beneath the Erlian Basin and less than 2.5 km beneath the Songliao Basin suggests the existence of sedimentary layers. Moreover, the high-velocity anomalies(~3.4–3.8 km s^(-1)) occurring at depths greater than 7 km in the Songliao Basin may reflect mafic intrusions emplaced during the Early Cretaceous. Velocity anomaly distribution in our imaging result is consistent with the location of the major faults, uplifts, and sedimentary depressions, as well as active-source seismic results. This application further validates the effectiveness of our method in constraining the depth-dependent characteristics of the S-wave velocity in basins with unconsolidated sedimentary cover. 展开更多
关键词 Receiver function Frequency dependence Two-step inversion shallow crustal velocity structures Unconsolidated sedimentary basins
原文传递
Shear-wave velocity structures of the shallow crust beneath the Ordos and Sichuan Basins from multi-frequency direct P-wave amplitudes in receiver functions 被引量:1
2
作者 Chenxiao TANG Ling CHEN Xu WANG 《Science China Earth Sciences》 SCIE EI CSCD 2022年第5期810-823,共14页
As the two largest cratonic basins in China,the Ordos Basin and the Sichuan Basin are of key importance for understanding the evolutionary history of the Chinese continent.In this study,the shear-wave velocity(V_(S))s... As the two largest cratonic basins in China,the Ordos Basin and the Sichuan Basin are of key importance for understanding the evolutionary history of the Chinese continent.In this study,the shear-wave velocity(V_(S))structures of the shallow crust(depth up to 10 km)beneath the two basins are imaged based on the frequency-dependence of direct P-wave amplitudes in receiver functions.The teleseismic data used in the study came from 160 broadband seismic stations,including permanent and temporary stations.The results show that the V_(S) and the thickness of the sediments in the Ordos Basin and the Sichuan Basin are respectively lower and thicker in the west than in the east.In the Ordos Basin,the shallow crustal V_(S) increases gradually from 2.10 km s^(−1)in the northwest to 2.65 km s^(−1)in the southeast and the thickest sediments are 7–8 km in the northwest and 5 km in the east.In the Sichuan Basin,the shallow crustal V_(S) increases from 2.4 km s^(−1) in the west to 2.7 km s^(−1)in the east and the thickness of the sediments decreases from>7 km in the west to 6 km in the east.The east-west difference of the shallow crustal structures of the two basins may have been controlled by the Cenozoic India-Eurasia collision.The western parts of the basins near the collision have a higher deposition rate,while in the parts inside the basins far from the collision,the V_(S) slowly increases with depth,indicating that these areas have experienced a more uniform deposition process.In addition,both basins are characterized by velocity structures that are higher along the edges and lower inside of the basins.The edges of the basins suffered strong denudation due to the uplifting and deformation influenced by tectonic evolution.The downward gradient of the shear-wave velocity beneath the Ordos Basin is twice that of the Sichuan Basin,which may be caused by the different deposition and denudation rates of the two basins resulting from differences in structural evolution and thermal events.In addition,the northern Ordos Basin exhibits a strong structural horizontal stratification,while the southern part shows obvious lateral variations in the V_(S) structure,both of which may have been affected by the Qilian orogenic event,the collision and assembly of the South China and the North China block,and the lateral extrusion of the Tibetan Plateau. 展开更多
关键词 shallow crustal velocity structures Receiver function Frequency dependence Ordos Basin Sichuan Basin Tectonic evolution
原文传递
Active Source Tomography in Northwestern Xinjiang,China:Implication for Mineral Distribution
3
作者 梅宝 徐义贤 钱辉 《Journal of Earth Science》 SCIE CAS CSCD 2011年第2期214-225,共12页
The main aim of this work is to understand the distribution of minerals by obtaining a shallow velocity structure around the Karatungk(喀拉通克) region.Data were acquired in 2009 by a denser array in deploying a tra... The main aim of this work is to understand the distribution of minerals by obtaining a shallow velocity structure around the Karatungk(喀拉通克) region.Data were acquired in 2009 by a denser array in deploying a transportable seismometer with 4.5 Hz vertical geophone.All the P-wave arrival times are picked automatically with Akaike information criterion,and then checked man-machine interactively by short-receiver geometry.The database for local active-source tomographic in-version involves 4 241 P-wave arrival time readings from 96 shots and three quarry blasts.Checker-board tests aimed at checking the reliability of the obtained velocity models are presented.The result-ing Vp distribution slices show a complicated 3-D structure beneath this area and offer a better under-standing of three well-defined mineral deposits.Near the surface we observe a series of zones with slightly high-velocity which probably reflect potential deposits.Based on features of metallic ores we attempt to delimit their distributions and stretched directions. 展开更多
关键词 active source tomography phase pick shallow velocity structure mineral distribution optimization 3-D iterative inversion.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部