The paleoenvironment of shales can be reconstructed to some extent using the combinations or concentrations of elements that correlate strongly with environmental conditions.In this study,we analyzed rare earth elemen...The paleoenvironment of shales can be reconstructed to some extent using the combinations or concentrations of elements that correlate strongly with environmental conditions.In this study,we analyzed rare earth elements(REEs),major elements,and trace elements in the marine-continental transitional shales(transitional shales for short)of the Shan 2^(3)submember of the Shanxi Formation in the southeastern Ordos Basin.The purpose is to deduce the paleoenvironmental conditions of the shales,encompassing paleoredox,paleoclimate,paleoproductivity,and paleo-provenance.The Shan 2^(3)submember comprises four sections,namely Shan 2^(3)-1,Shan 2^(3)-2,Shan 2^(3)-3,and Shan 2^(3)-4.The Ba/Al,P/Al,and Cu/Al ratios,along with biogenic barium(Babio),indicate that the paleoproductivity of the submember peaked during the Shan 2^(3)-1 deposition and exhibited a downtrend upward in other sections.Trends in the Uau and the Ni/Co,V/Cr,U/Th,and V/Sc ratios suggest that suboxic conditions prevailed during the Shan 2^(3)-1 deposition,with the oxidation level gradually increasing from Shan 2^(3)-1 to Shan 2^(3)-4.C-value and the Sr/Cu vs.Ga/Rb cross-plot indicate a warm and arid paleoclimate during the Shan 2^(3)-1 deposition,which transitioned to cooler,drier conditions during the deposition of other sections.Indicators sensitive to paleoclimate,such as the K/Rb and Th/U ratios,along with the ICV,PIA,and Chemical Index of Alteration(CIA),highlight elevated weathering from Shan 2^(3)-2 to Shan 2^(3)-4,with Shan 2^(3)-1 exhibiting the weakest weathering during its deposition.As suggested by the REE data,the Zr/Sc vs.Th/Sr cross-plot,provenance discriminant functions,and the cross-plots of Hf vs.La/Th,Th vs.Hf-Co,and∑REE vs.La/Yb,the sedimentary provenance for the transitional shales of the Shan 2^(3)submember is of multiple origins,with significant contributions from the Upper Continental Crust(UCC).Discriminant diagrams,including those of Th-Co-Zr/10,Th-Sc-Zr/10,La-Th-Sc,and K_(2)O/Na_(2)O vs.SiO_(2),suggest that the transitional shales of the Shan 2^(3)submember were primarily deposited under tectonic settings such as continental island arcs(CIAs)and passive continental margins(PCMs).展开更多
Endemic to China, the Emei Shan Liocichla(Liocichla omeiensis) is considered globally vulnerable by the IUCN because of its small, declining population and fragmented range. The species has been recorded in only a few...Endemic to China, the Emei Shan Liocichla(Liocichla omeiensis) is considered globally vulnerable by the IUCN because of its small, declining population and fragmented range. The species has been recorded in only a few mountainous forests in south-central Sichuan and in the extreme northeast of Yunnan Province. We summarized the basic eco-biology information on its habitat,breeding, winter habits and behavior, voice, population status, research and conservation.展开更多
The Early Cretaceous Hohhot metamorphic core complex (mcc) of the Daqing Shan (Mtns.) of central Inner Mongolia is among the best exposed and most spectacular of the spatially isolated mcc's that developed within...The Early Cretaceous Hohhot metamorphic core complex (mcc) of the Daqing Shan (Mtns.) of central Inner Mongolia is among the best exposed and most spectacular of the spatially isolated mcc's that developed within the northern edge of the North China "craton". All of these mcc's were formed within the basement of a Late Paleozoic Andean-style arc and across older Mesozoic fold-and-thrust belts of variable age and tectonic vergence. The master Hohhot detachment fault roots southwards within the southem margin of the Daqing Shan for an along-strike distance of at least 120 km. Its geometry in the range to the north is complicated by interference patterns between (1) primary, large-scale NW-SE-trend- ing convex and concave fault corrugations and (2) secondary ENE-WSW-trending antiforms and syn- forms that folded the detachment in its late kinematic history. As in the Whipple Mtns. of California, the Hohhot master detachment is not of the Wernicke (1981) simple rooted type; instead, it was spawned from a mid-crustal shear zone, the top of which is preserved as a mylonitic front within Carboniferous metasedimentary rocks in its exhumed lower plate. 4~Ar-39Ar dating of siliceous volcanic rocks in basal sections of now isolated supradetachment basins suggest that crustal extension began at ca. 127 Ma, although lower-plate mylonitic rocks were not exposed to erosion until after ca. 119 Ma. Essentially synchronous cooling of bornblende, biotite, and muscovite in footwall mylonitic gneisses indicates very rapid exhumation and at ca. 122--120 Ma. Contrary to several recent reports, the master detachment clearly cuts across and dismembers older, north-directed thrust sheets of the Daqing Shah foreland fold-and-thrust belt. Folded and thrust-faulted basalts within its foredeep strata are as young as 132.6 ± 2.4 Ma, thus defining within 5--6 Ma the regional tectonic transition between crustal contraction and profound crustal extension.展开更多
There is a massive amount of geomorphic evidence for active tectonics in the Longmen Shan at the eastern margin of the Tibetan plateau. We have surveyed some typical geomorphic markers including the Wenchuan-Maowen, B...There is a massive amount of geomorphic evidence for active tectonics in the Longmen Shan at the eastern margin of the Tibetan plateau. We have surveyed some typical geomorphic markers including the Wenchuan-Maowen, Beichuan-Yingxiu and Pengxian-Guanxian faults, terrace offsets, scarps, fault-controlled saddles, dextral shutter ridges, dextral channel offsets, graben, shatter belts, and pull-apart basins. Electron spin resonance (ESR) and thermoluminescence(TL) ages were obtained using silty sand taken from below the surface of the sediments. According to these data, we calculated the rates of thrusting and strike-slip, and the results indicate that Cenozoic tectonic shortening at the plateau margin is minor with the rate of thrusting less than 1.10 mm/a and the rate of strike-slipping less than 1.46 mm/a. The Longmen Shan is a zone of NNE-trending dextral shear with slip-dip ratio of 6:1-1.3:1. From NW to SE, the thrust component becomes smaller, whereas the strike-slip component becomes larger.展开更多
By analyzing the deep seismic sounding profiles across the Longmen Shan, this paper focuses on the study of the relationship between the upper crust structure of the Longmen Shan area and the Wenchuan earthquake. The ...By analyzing the deep seismic sounding profiles across the Longmen Shan, this paper focuses on the study of the relationship between the upper crust structure of the Longmen Shan area and the Wenchuan earthquake. The Longmen Shan thrust belt marks not only the topographical change, but also the lateral velocity variation between the eastern Tibetan Plateau and the Sichuan Basin. A low-velocity layer has consistently been found in the crust beneath the eastern edge of the Tibetan Plateau, and ends beneath the western Sichuan Basin. The low-velocity layer at a depth of -20 km beneath the eastern edge of the Tibetan Plateau has been considered as the deep condition for favoring energy accumulation that formed the great Wenchuan earthquake.展开更多
The Ailao Shan-Red River fault zone is the boundary between the Yangtze block to the northeast and the Indochina block to the southwest.It is an important tectonic zone due to its role in the southeastward extrusion o...The Ailao Shan-Red River fault zone is the boundary between the Yangtze block to the northeast and the Indochina block to the southwest.It is an important tectonic zone due to its role in the southeastward extrusion of the Indochina block during and subsequent to the Indian-Eurasian collision.Diancang Shan(DCS) high-grade metamorphic complex,located at the northwest extension along the Ailao Shan-Red River(ASRR) shear zone,is a representative metamorphic complex of the ASRR tectonic belt.Structural and microstructural analysis of sheared rocks in the high-grade metamorphic rocks reveals that they are coherent with solid-state high-temperature ductile deformation,which is attributed to left-lateral shearing along the ASRR shear zone.New LA-ICP-MS zircon U-Pb geochronological and microstructural studies of the post-kinematic granitic plutons provide a straightforward time constraint on the termination ductile left-lateral shearing and exhumation of the metamorphic massif in the ASRR shear zone.It is suggested that the left-lateral shearing along the ASRR shear zone ended at ca.21 Ma at relative lower-temperature or decreasing temperature conditions.During or after the emplacement of the young dikes at ca.21 Ma,rapid brittle deformation event occurred,which makes the DCS massif start fast uplift/exhumation and cooling to a shallow crustal level.展开更多
This study provides new low-temperature thermochronometric data, mainly apatite fission track data on the basement rocks in and adjacent to the Talas-Fergana Fault, in the Kyrgyz Tien Shan in the first place.In the se...This study provides new low-temperature thermochronometric data, mainly apatite fission track data on the basement rocks in and adjacent to the Talas-Fergana Fault, in the Kyrgyz Tien Shan in the first place.In the second place, we also present new detrital apatite fission track data on the Meso-Cenozoic sediments from fault related basins and surrounding intramontane basins. Our results confirm multistaged Meso-Cenozoic tectonic activity, possibly induced by the accretion of the so-called Cimmerian blocks to the Eurasian margin. New evidence for this multi-staged thermo-tectonic activity is found in the data of both basement and Meso-Cenozoic sediment samples in or close to the Talas-Fergana Fault.Zircon(U-Th)/He and apatite fission track data constrain rapid Late TriassiceE arly Jurassic and Late JurassiceE arly Cretaceous basement cooling in the Kyrgyz Tien Shan around 200 Ma and 130 -100 Ma respectively. Detrital apatite fission track results indicate a different burial history on both sides of the Talas-Fergana Fault. The apatite fission track system of the Jurassic sediments in the Middle Tien Shan unit east of the Talas-Fergana Fault is not reset, while the Jurassic sediments in the Fergana Basin and Yarkand-Fergana Basin, west of the fault zone, are partially and in some cases even totally reset. The totally reset samples exhibit Oligocene and Miocene ages and evidence the Cenozoic reactivation of the western Kyrgyz Tien Shan as a consequence of the India-Eurasia convergence.展开更多
Depending on the analysis of the coeval sedimentary geometry and subsidence mechanism in the Longmen Shan foreland basin, three models about the coupling relationship between Longmen Shan uplift and foreland basin sub...Depending on the analysis of the coeval sedimentary geometry and subsidence mechanism in the Longmen Shan foreland basin, three models about the coupling relationship between Longmen Shan uplift and foreland basin subsidence since the Indosinian have been proposed:(1) crustal shortening and its related wide wedge-shaped foreland basin,(2) crustal isostatic rebound and its related tabular foreland basin, and(3) lower crustal flow and its related narrow wedge-shaped foreland basin. Based on the narrow wedge-shaped foreland basin developed since 4 Ma, it is believed that the narrow crustal shortening and tectonic load driven by lower crustal flow is a primary driver for the present Longmen Shan uplift and the Wenchuan(Ms 8.0) earthquake.展开更多
The coseismic surface uplift of the Longmen Shan(LMS) created an instantaneous topographic load over the western margin of the Sichuan Basin, where surface subsidence, decreasing eastward, has been measured using se...The coseismic surface uplift of the Longmen Shan(LMS) created an instantaneous topographic load over the western margin of the Sichuan Basin, where surface subsidence, decreasing eastward, has been measured using several methods, such as GPS, SAR and levelling. Using an elastic flexural model, we aim to interpret the coseismic surface uplift and subsidence, and constrain the effective lithospheric elastic thickness(Te) of the Sichuan Basin. Using different effective elastic thickness values for the Sichuan Basin, a series of subsidence curves were computed by the elastic flexure model equation for a broken elastic plate. The curves, produced by models using an effective elastic thickness of 30–40 km, provided the best fit to the general pattern of observed coseismic subsidence of the Sichuan Basin. However, the calculated subsidence(-40–70 cm) at the front of the LMS is evidently lower than the observed values(-100 cm), suggesting that the effective elastic thickness therein should be lower. These results indicate that the lithospheric strength may decrease westward from the Sichuan Basin to the LMS.展开更多
Recent studies on glaciers in the West Kunlun Shan, northwest Tibetan Plateau, have shown that they may be stable or retreating slightly. Here, we assess changes in the mass of the glaciers in the West Kunlun Shan(WKS...Recent studies on glaciers in the West Kunlun Shan, northwest Tibetan Plateau, have shown that they may be stable or retreating slightly. Here, we assess changes in the mass of the glaciers in the West Kunlun Shan(WKS) in an attempt to understand the processes that control their behavior. Glaciers over the recent 40 years(1970-2010) have shrunk 3.4±3.1%in area, based on a comparison between two Chinese glacier inventories. Variations of surface elevations, derived from ICESat-GLAS(Ice, Cloud, and Land Elevation Satellite-Geoscience Laser Altimeter System) elevation products(GLA14 data) using the robust linear-fit method, indicate that the glaciers have been gaining mass at a rate of 0.23±0.24 m w.e./a since 2003. The annual mass budget for the whole WKS range from 2003 to 2009 is estimated to be 0.71±0.62 Gt/a. This gain trend is confirmed by MOD10A1 albedo for the WKS region which shows a descent of the mean snowline altitude from 2003 to 2009.展开更多
Light-absorbing impurities on glaciers are important factors that influence glacial surface albedo and accelerate glacier melt. In this study, the quantity of light-absorbing impurities on Keqikaer Glacier in western ...Light-absorbing impurities on glaciers are important factors that influence glacial surface albedo and accelerate glacier melt. In this study, the quantity of light-absorbing impurities on Keqikaer Glacier in western Tien Shan, Central Asia, was measured. We found that the average concentrations of black carbon was 2,180 ng/g, with a range from 250 ng/g to more than 10,000 ng/g. The average concentrations of organic carbon and mineral dust were 1,738 ng/g and 194 μg/g, respectively. Based on simulations performed with the Snow Ice Aerosol Radiative model simulations, black carbon and dust are responsible for approximately 64% and 9%, respectively, of the albedo reduction, and are associated with instantaneous radiative forcing of 323.18 W/m2(ranging from 142.16 to 619.25 W/m2) and 24.05 W/m2(ranging from 0.15 to69.77 W/m2), respectively. For different scenarios, the albedo and radiative forcing effect of black carbon is considerably greater than that of dust. The estimated radiative forcing at Keqikaer Glacier is higher than most similar values estimated by previous studies on the Tibetan Plateau, perhaps as a result of black carbon enrichment by melt scavenging. Light-absorbing impurities deposited on Keqikaer Glacier appear to mainly originate from central Asia, Siberia, western China(including the Taklimakan Desert) and parts of South Asia in summer, and from the Middle East and Central Asia in winter.A footprint analysis indicates that a large fraction(>60%) of the black carbon contributions on Keqikaer Glacier comes from anthropogenic sources. These results provide a scientific basis for regional mitigation efforts to reduce black carbon.展开更多
Forests are important ecosystems for economic and social development.However,the response of tree radial growth to climate has produced‘divergent problems'at high latitudes under global warming.In this study,the ...Forests are important ecosystems for economic and social development.However,the response of tree radial growth to climate has produced‘divergent problems'at high latitudes under global warming.In this study,the response stability and trend of Picea schrenkiana radial growth to variability in climate factors were analyzed in the mid-latitudes of the western Tien Shan Mountains.Radial growth of P.schrenkiana was mainly limited by minimum and mean temperatures.The divergent responses of radial growth occurred in response to the minimum and mean temperatures at the beginning of the growing season(April–May)of the current year,but responses to drought occurred in July–September of the previous year.And the mean and minimum temperatures in June–September of the current year were both stable.Radial growth first increased and then decreased according to the basal area increment,with a gradual increase in temperature.Therefore,forest ecosystems in mountainous arid areas will be increasingly affected by future climate warming.展开更多
The Yunmeng Shan metamorphic core complex (MCC) is composed of the lower plate, the upper plate and the detachment zone. The detachment zone consists of ductile shear zone (mylonite zone), chloritized microbreccia...The Yunmeng Shan metamorphic core complex (MCC) is composed of the lower plate, the upper plate and the detachment zone. The detachment zone consists of ductile shear zone (mylonite zone), chloritized microbreccias zone and the brittle fault plane. The ductile shear zone contains mylonitic rocks, protomylonites, and mylonites. Finite strain measurements of feldspar porphyroclasts from those rocks using the Rf/φ method show that the strain intensities increase from mylonitic rocks (Es=0.66-0.72) to protomylonites (Es=0.66-0.83), and to mylonites (Es=0.71-1.2). The strain type is close to flatten strain. Kinematic vorticity estimated by Polar Mohr diagrams suggest that foliations and lineation of mylonite (0.47〈Wk〈0.85) record a bulk simple-dominated general shearing at the initial evolution stage of the Yunmeng Shan MCC's detachment zone; and the extensional crenulation cleavage(ecc) (0.34〈Wk〈0.77) recorded a bulk pure-dominated general shearing at the later stage of the evolution. Kinematic vorticity measurements also show that the Yunmeng Shan MCC detachment zone is a result of a combination of simple-dominated general shearing caused by crustal extension at the early stage and pure-dominated general shearing caused by MCC uplifting at the late stage. The ductile thinning estimated by finite strain measurements and estimation of Kinematic vorticity ranges from 52% to 82%, which is the minimum thining estimation. Our studies provide new evidence for mechanisms of the Yunmeng Shan MCC detachement zone.展开更多
Meso-Cenozoic intracontinental orogenic processes in the Tian Shan orogenic belt have significant effect on the sandstone-hosted uranium deposits in the intramontane basins and those adjacent to the orogen. The Sawafu...Meso-Cenozoic intracontinental orogenic processes in the Tian Shan orogenic belt have significant effect on the sandstone-hosted uranium deposits in the intramontane basins and those adjacent to the orogen. The Sawafuqi uranium deposit, which is located in the South Tian Shan orogenic belt, is investigated to reveal the relationships between uranium mineralization and orogenies. Recent exploration results show that the Sawafuqi uranium deposit has tabular, stratiform, quasi-stratiform, and lens-like orebodies and various geological characteristics different from typical interlayer oxidation zone sandstone-hosted uranium deposits. Systematic studies of ore samples from the Sawafuqi uranium deposit using a variety of techniques, including thin section observation, a-track radiograph, electron microprobe and scanning electron microscope, suggest that uranium mineralization is closely related to pyrite and organic matter. Mineralization-related alterations in the host rocks are mainly silicification and argillation including kaolinite, illite (and illite-smectite mixed layer) and chlorite. Tree stages of mineralization were identified in the Sawafuqi uranium deposit: (i) uranium-bearing detritus and synsedimentary initial pre-enrichment; (ii) interlayer oxidization zone uranium mineralization; and (iii) vein-type uranium mineralization. The synsedimentary uranium pre-enrichment represents an early uranium enrichment in the Sawafuqi uranium deposit, and interlayer oxidation zone uranium mineralization formed the main orebodies, which are superimposed by the vein-type uranium mineralization. Combining the results of this study with previous studies on the Meso-Cenozoic orogenies of South Tian Shan, it is proposed that the synsedimentary uranium pre-enrichment of the Sawafuqi uranium deposit was caused by Triassic Tian Shan uplift, and the interlayer oxidation zone uranium mineralization occurred during the Eocence-Oligocene period, when tectonism was relatively quiet, whereas the vein-type uranium mineralization took place in relation to the strong orogeny of South Tian Shan since Miocene.展开更多
The uplift of the Ailao Shan-Diancang Shan (ASDS) along the Ailao Shan-Red River (ASRR) shear zone is an important geological event in the southeastern margin of Qinghai-Tibet Plateau tectonic domain in the Late C...The uplift of the Ailao Shan-Diancang Shan (ASDS) along the Ailao Shan-Red River (ASRR) shear zone is an important geological event in the southeastern margin of Qinghai-Tibet Plateau tectonic domain in the Late Cenozoic, and it preserves important information on the structures, exhumationai history and tectonic evolution of the ASRR shear zone. The uplift structural mode and uplift timing of the ASDS is currently an important scientific topic for understanding the ASDS formation and late stage movements and evolution of the ASRR shear zone. The formation of the ASDS has been widely considered to be the consequence of the strike-slip movements of the ASRR shear zone. However, the shaping of geomorphic units is generally direct results of the latest tectonic activities. In this study, we investigated the timing and uplift structural mechanism of the ASDS and provided the following lines of supportive evidence. Firstly, the primary tectonic foliation of the ASDS shows significant characteristic variations, with steeply dipping tectonic foliation developed on the east side of the ASDS and the relatively horizontal foliation on the west side. Secondly, from northeast to southwest direction, the deformation and metamorphism gradually weakened and this zone can be further divided into three different metamorphic degree belts. Thirdly, the contact relationship between the ASDS and the Chuxiong basin-Erhai lake is a normal fault contact which can be found on the east side of the ASDS. 40^Ar/^39 Argeochronology suggests that the Diancang Shan had experienced a fast cooling event during 3-4 Ma. The apatite fission track testing method gives the age of 6.6-10.7 Ma in the Diancang Shan and 4.6-8.4 Ma in the Ailao Shan, respectively. Therefore the uplift of the ASDS can be explained by tilted block mode in which the east side was uplifted much higher than the west side, and it is not main reason of the shearing movements of the ASRR shear zone. The most recent uplift stages of the ASDS happened in the Pliocene (3-4 Ma) and Late Miocene (6-10 Ma).展开更多
This study examines the relationship between high positive isostatic gravity anomalies (IGA), steep topography and lower crustal extrusion at the eastern margin of the Tibetan Plateau. IGA data has revealed uplift a...This study examines the relationship between high positive isostatic gravity anomalies (IGA), steep topography and lower crustal extrusion at the eastern margin of the Tibetan Plateau. IGA data has revealed uplift and extrusion of lower crustal flow in the Longmen Shan Mountains (the LMS). Firstly, The high positive IGA zone corresponds to the LMS orogenic belt. It is shown that abrupt changes in IGA correspond to zones of abrupt change of topography, crustal thickness and rock density along the LMS. Secondly, on the basis of the Airy isostasy theory, simulations and inversions of the positive IGA were conducted using three-dimensional bodies. The results indicated that the LMS lacks a mountain root, and that the top surface of the lower crust has been elevated by 11 km, leading to positive IGA, tectonic load and density load. Thirdly, according to Watts's flexural isostasy model, elastic deflection occurs, suggesting that the limited (i.e. narrow) tectonic and density load driven by lower crustal flow in the LMS have led to asymmetric flexural subsidence in the foreland basin and lifting of the forebulge. Finally, based on the correspondence between zones of extremely high positive IGA and the presence of the Precambrian Pengguan-Baoxing complexes in the LMS, the first appearance of erosion gravels from the complexes in the Dayi Conglomerate layer of the Chengdu Basin suggest that positive IGA and lower crustal flow in the LMS took place at 3.6 Ma or slightly earlier.展开更多
The Laji Shan—Jishi Shan tectonic belt(LJTB),located in the southern part of the northeastern Tibetan Plateau(NETP),is a tectonic window to reveal regional tectonic deformation in the NETP.However,its kinematics in t...The Laji Shan—Jishi Shan tectonic belt(LJTB),located in the southern part of the northeastern Tibetan Plateau(NETP),is a tectonic window to reveal regional tectonic deformation in the NETP.However,its kinematics in the Holocene remains controversial.We obtain the latest and dense horizontal velocity field based on data collected from our newly constructed and existing GNSS stations.Combined with fault kinematics from geologic observations,we analyze the crustal deformation characteristics along the LJTB.The results show that:(1)The Laji Shan fault(LJF)is inactive,and the northwest-oriented Jishi Shan fault(JSF)exhibits a significant dextral and thrust slip.(2)The transpression along the arc-shaped LJTB accommodates deformation transformation between the dextral Riyue Shan fault and the sinistral west Qinling fault.(3)With the continuous pushing of the Indian plate,internal strains in the Tibetan Plateau are continuously transferred in the northeast via the LJTB as they are gradually dissipated near the LJTB and translated into significant crustal uplift in these regions.展开更多
基金funded by the Science and Technology Cooper-ation Project of the CNPC-SWPU Innovation Alliance(Grant No.2020CX030101)the National Natural Science Foundation of China(Grant No.51674044).
文摘The paleoenvironment of shales can be reconstructed to some extent using the combinations or concentrations of elements that correlate strongly with environmental conditions.In this study,we analyzed rare earth elements(REEs),major elements,and trace elements in the marine-continental transitional shales(transitional shales for short)of the Shan 2^(3)submember of the Shanxi Formation in the southeastern Ordos Basin.The purpose is to deduce the paleoenvironmental conditions of the shales,encompassing paleoredox,paleoclimate,paleoproductivity,and paleo-provenance.The Shan 2^(3)submember comprises four sections,namely Shan 2^(3)-1,Shan 2^(3)-2,Shan 2^(3)-3,and Shan 2^(3)-4.The Ba/Al,P/Al,and Cu/Al ratios,along with biogenic barium(Babio),indicate that the paleoproductivity of the submember peaked during the Shan 2^(3)-1 deposition and exhibited a downtrend upward in other sections.Trends in the Uau and the Ni/Co,V/Cr,U/Th,and V/Sc ratios suggest that suboxic conditions prevailed during the Shan 2^(3)-1 deposition,with the oxidation level gradually increasing from Shan 2^(3)-1 to Shan 2^(3)-4.C-value and the Sr/Cu vs.Ga/Rb cross-plot indicate a warm and arid paleoclimate during the Shan 2^(3)-1 deposition,which transitioned to cooler,drier conditions during the deposition of other sections.Indicators sensitive to paleoclimate,such as the K/Rb and Th/U ratios,along with the ICV,PIA,and Chemical Index of Alteration(CIA),highlight elevated weathering from Shan 2^(3)-2 to Shan 2^(3)-4,with Shan 2^(3)-1 exhibiting the weakest weathering during its deposition.As suggested by the REE data,the Zr/Sc vs.Th/Sr cross-plot,provenance discriminant functions,and the cross-plots of Hf vs.La/Th,Th vs.Hf-Co,and∑REE vs.La/Yb,the sedimentary provenance for the transitional shales of the Shan 2^(3)submember is of multiple origins,with significant contributions from the Upper Continental Crust(UCC).Discriminant diagrams,including those of Th-Co-Zr/10,Th-Sc-Zr/10,La-Th-Sc,and K_(2)O/Na_(2)O vs.SiO_(2),suggest that the transitional shales of the Shan 2^(3)submember were primarily deposited under tectonic settings such as continental island arcs(CIAs)and passive continental margins(PCMs).
基金supported by projects of the Sichuan Provincial Science&Technology Department(2011JYZ008)the Sichuan Provincial Education Department(11ZA155)Leshan Normal University(Z1158)
文摘Endemic to China, the Emei Shan Liocichla(Liocichla omeiensis) is considered globally vulnerable by the IUCN because of its small, declining population and fragmented range. The species has been recorded in only a few mountainous forests in south-central Sichuan and in the extreme northeast of Yunnan Province. We summarized the basic eco-biology information on its habitat,breeding, winter habits and behavior, voice, population status, research and conservation.
基金sponsored by National Science Foundation grants EAR-9627909 and EAR-9903012 to Davisa China National Natural Sciences Foundation grant to Zheng+1 种基金a Louisiana State University research grant to DarbyRadiometric dating was done by George Gehrels of the University of Arizona(U-Pb) and by Terry Spell of the Nevada Isotope Geochronology Laboratory (Ar/Ar,funded in part by NSF grant EPS-9720162)
文摘The Early Cretaceous Hohhot metamorphic core complex (mcc) of the Daqing Shan (Mtns.) of central Inner Mongolia is among the best exposed and most spectacular of the spatially isolated mcc's that developed within the northern edge of the North China "craton". All of these mcc's were formed within the basement of a Late Paleozoic Andean-style arc and across older Mesozoic fold-and-thrust belts of variable age and tectonic vergence. The master Hohhot detachment fault roots southwards within the southem margin of the Daqing Shan for an along-strike distance of at least 120 km. Its geometry in the range to the north is complicated by interference patterns between (1) primary, large-scale NW-SE-trend- ing convex and concave fault corrugations and (2) secondary ENE-WSW-trending antiforms and syn- forms that folded the detachment in its late kinematic history. As in the Whipple Mtns. of California, the Hohhot master detachment is not of the Wernicke (1981) simple rooted type; instead, it was spawned from a mid-crustal shear zone, the top of which is preserved as a mylonitic front within Carboniferous metasedimentary rocks in its exhumed lower plate. 4~Ar-39Ar dating of siliceous volcanic rocks in basal sections of now isolated supradetachment basins suggest that crustal extension began at ca. 127 Ma, although lower-plate mylonitic rocks were not exposed to erosion until after ca. 119 Ma. Essentially synchronous cooling of bornblende, biotite, and muscovite in footwall mylonitic gneisses indicates very rapid exhumation and at ca. 122--120 Ma. Contrary to several recent reports, the master detachment clearly cuts across and dismembers older, north-directed thrust sheets of the Daqing Shah foreland fold-and-thrust belt. Folded and thrust-faulted basalts within its foredeep strata are as young as 132.6 ± 2.4 Ma, thus defining within 5--6 Ma the regional tectonic transition between crustal contraction and profound crustal extension.
基金This research was supported by the National Nature Foundation of China (49803031, 40372084) the Seismic Scientific United Fund (95-07-0425)+3 种基金 US National Science Foundation grant EAR-0125565 ETH Forschungskommission grant TH-4/03-01 Key Subject Program of Sichuan province Grant No. SZD0408 and the Program for the Subject of Ph.D. in Higher Education Institute, Grant No.20050616004.
文摘There is a massive amount of geomorphic evidence for active tectonics in the Longmen Shan at the eastern margin of the Tibetan plateau. We have surveyed some typical geomorphic markers including the Wenchuan-Maowen, Beichuan-Yingxiu and Pengxian-Guanxian faults, terrace offsets, scarps, fault-controlled saddles, dextral shutter ridges, dextral channel offsets, graben, shatter belts, and pull-apart basins. Electron spin resonance (ESR) and thermoluminescence(TL) ages were obtained using silty sand taken from below the surface of the sediments. According to these data, we calculated the rates of thrusting and strike-slip, and the results indicate that Cenozoic tectonic shortening at the plateau margin is minor with the rate of thrusting less than 1.10 mm/a and the rate of strike-slipping less than 1.46 mm/a. The Longmen Shan is a zone of NNE-trending dextral shear with slip-dip ratio of 6:1-1.3:1. From NW to SE, the thrust component becomes smaller, whereas the strike-slip component becomes larger.
基金financed by International Sciences and Technology cooperation(2006DFA21340)the special funds for Sciences and technology research of public welfare trades(200811021)+2 种基金the key innovation project for sciences and technology of ministry of land and resources(1212010711813)the Basic outlay of scientific research work from Ministry of Science and Technology of the People's Republic of China(J0803)the National Natural Science Foundation of China(40830316 and 40874045)and SINOPPROBE-02
文摘By analyzing the deep seismic sounding profiles across the Longmen Shan, this paper focuses on the study of the relationship between the upper crust structure of the Longmen Shan area and the Wenchuan earthquake. The Longmen Shan thrust belt marks not only the topographical change, but also the lateral velocity variation between the eastern Tibetan Plateau and the Sichuan Basin. A low-velocity layer has consistently been found in the crust beneath the eastern edge of the Tibetan Plateau, and ends beneath the western Sichuan Basin. The low-velocity layer at a depth of -20 km beneath the eastern edge of the Tibetan Plateau has been considered as the deep condition for favoring energy accumulation that formed the great Wenchuan earthquake.
基金support from the State Key Research"973"Plan of China(No. 2009CB421001)National Natural Science Foundation of China(40872139)+1 种基金the 111 Project(B07011) of the Ministry of Education,State Key Laboratory of Geological Processes and Mineral Resources (GPMR200837)the Fundamental Research Funds for the Central Universities(GPMR2009PY01)
文摘The Ailao Shan-Red River fault zone is the boundary between the Yangtze block to the northeast and the Indochina block to the southwest.It is an important tectonic zone due to its role in the southeastward extrusion of the Indochina block during and subsequent to the Indian-Eurasian collision.Diancang Shan(DCS) high-grade metamorphic complex,located at the northwest extension along the Ailao Shan-Red River(ASRR) shear zone,is a representative metamorphic complex of the ASRR tectonic belt.Structural and microstructural analysis of sheared rocks in the high-grade metamorphic rocks reveals that they are coherent with solid-state high-temperature ductile deformation,which is attributed to left-lateral shearing along the ASRR shear zone.New LA-ICP-MS zircon U-Pb geochronological and microstructural studies of the post-kinematic granitic plutons provide a straightforward time constraint on the termination ductile left-lateral shearing and exhumation of the metamorphic massif in the ASRR shear zone.It is suggested that the left-lateral shearing along the ASRR shear zone ended at ca.21 Ma at relative lower-temperature or decreasing temperature conditions.During or after the emplacement of the young dikes at ca.21 Ma,rapid brittle deformation event occurred,which makes the DCS massif start fast uplift/exhumation and cooling to a shallow crustal level.
基金supported by a Ghent University project (BOF 015B1309)the DARIUS program+2 种基金supported by ARC DP150101730TRAX record 387. F.Isupported by state assignment project No. 0330-2016-0015
文摘This study provides new low-temperature thermochronometric data, mainly apatite fission track data on the basement rocks in and adjacent to the Talas-Fergana Fault, in the Kyrgyz Tien Shan in the first place.In the second place, we also present new detrital apatite fission track data on the Meso-Cenozoic sediments from fault related basins and surrounding intramontane basins. Our results confirm multistaged Meso-Cenozoic tectonic activity, possibly induced by the accretion of the so-called Cimmerian blocks to the Eurasian margin. New evidence for this multi-staged thermo-tectonic activity is found in the data of both basement and Meso-Cenozoic sediment samples in or close to the Talas-Fergana Fault.Zircon(U-Th)/He and apatite fission track data constrain rapid Late TriassiceE arly Jurassic and Late JurassiceE arly Cretaceous basement cooling in the Kyrgyz Tien Shan around 200 Ma and 130 -100 Ma respectively. Detrital apatite fission track results indicate a different burial history on both sides of the Talas-Fergana Fault. The apatite fission track system of the Jurassic sediments in the Middle Tien Shan unit east of the Talas-Fergana Fault is not reset, while the Jurassic sediments in the Fergana Basin and Yarkand-Fergana Basin, west of the fault zone, are partially and in some cases even totally reset. The totally reset samples exhibit Oligocene and Miocene ages and evidence the Cenozoic reactivation of the western Kyrgyz Tien Shan as a consequence of the India-Eurasia convergence.
基金funded by China National Natural Science Foundation(No:41372114,41502116,41340005,40841010,40972083,41172162,and 41402159)geological survey from China Geological Survey(No:121201010000150004–08 and 12120115004501–01)the project of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(No:SK–0801)
文摘Depending on the analysis of the coeval sedimentary geometry and subsidence mechanism in the Longmen Shan foreland basin, three models about the coupling relationship between Longmen Shan uplift and foreland basin subsidence since the Indosinian have been proposed:(1) crustal shortening and its related wide wedge-shaped foreland basin,(2) crustal isostatic rebound and its related tabular foreland basin, and(3) lower crustal flow and its related narrow wedge-shaped foreland basin. Based on the narrow wedge-shaped foreland basin developed since 4 Ma, it is believed that the narrow crustal shortening and tectonic load driven by lower crustal flow is a primary driver for the present Longmen Shan uplift and the Wenchuan(Ms 8.0) earthquake.
基金funded by the National Natural Science Foundation of China(Grant No.41502116,40841010,40972083,41172162,41372114,and 41340005)the National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Grant No.SK–0801)
文摘The coseismic surface uplift of the Longmen Shan(LMS) created an instantaneous topographic load over the western margin of the Sichuan Basin, where surface subsidence, decreasing eastward, has been measured using several methods, such as GPS, SAR and levelling. Using an elastic flexural model, we aim to interpret the coseismic surface uplift and subsidence, and constrain the effective lithospheric elastic thickness(Te) of the Sichuan Basin. Using different effective elastic thickness values for the Sichuan Basin, a series of subsidence curves were computed by the elastic flexure model equation for a broken elastic plate. The curves, produced by models using an effective elastic thickness of 30–40 km, provided the best fit to the general pattern of observed coseismic subsidence of the Sichuan Basin. However, the calculated subsidence(-40–70 cm) at the front of the LMS is evidently lower than the observed values(-100 cm), suggesting that the effective elastic thickness therein should be lower. These results indicate that the lithospheric strength may decrease westward from the Sichuan Basin to the LMS.
基金supported by a National Science Foundation of China major project (Grant No. 41190084) funded by the National Natural Science Foundation of Chinathe National Key Technology R&D Program (Grant No. 2012BAC19B07)+2 种基金the International S&T Cooperation Program of the Ministry of Science and Technology of China (Grant No. 2010DFA92720-23)provided by the MOST (Grant No. 2006FY110200)CAS projects (Grant No. KZCX2-YW-301)
文摘Recent studies on glaciers in the West Kunlun Shan, northwest Tibetan Plateau, have shown that they may be stable or retreating slightly. Here, we assess changes in the mass of the glaciers in the West Kunlun Shan(WKS) in an attempt to understand the processes that control their behavior. Glaciers over the recent 40 years(1970-2010) have shrunk 3.4±3.1%in area, based on a comparison between two Chinese glacier inventories. Variations of surface elevations, derived from ICESat-GLAS(Ice, Cloud, and Land Elevation Satellite-Geoscience Laser Altimeter System) elevation products(GLA14 data) using the robust linear-fit method, indicate that the glaciers have been gaining mass at a rate of 0.23±0.24 m w.e./a since 2003. The annual mass budget for the whole WKS range from 2003 to 2009 is estimated to be 0.71±0.62 Gt/a. This gain trend is confirmed by MOD10A1 albedo for the WKS region which shows a descent of the mean snowline altitude from 2003 to 2009.
基金supported by the National Natural Science Foundation of China (41630754, 41671067, and 41501063)the Chinese Academy of Sciences (KJZD-EW-G03-04), the State Key Laboratory of Cryosphere Science (SKLCS-ZZ-2015)the Foundation for Excellent Youth Scholars of Northwest Institute of Eco-Environment and Resources, CAS
文摘Light-absorbing impurities on glaciers are important factors that influence glacial surface albedo and accelerate glacier melt. In this study, the quantity of light-absorbing impurities on Keqikaer Glacier in western Tien Shan, Central Asia, was measured. We found that the average concentrations of black carbon was 2,180 ng/g, with a range from 250 ng/g to more than 10,000 ng/g. The average concentrations of organic carbon and mineral dust were 1,738 ng/g and 194 μg/g, respectively. Based on simulations performed with the Snow Ice Aerosol Radiative model simulations, black carbon and dust are responsible for approximately 64% and 9%, respectively, of the albedo reduction, and are associated with instantaneous radiative forcing of 323.18 W/m2(ranging from 142.16 to 619.25 W/m2) and 24.05 W/m2(ranging from 0.15 to69.77 W/m2), respectively. For different scenarios, the albedo and radiative forcing effect of black carbon is considerably greater than that of dust. The estimated radiative forcing at Keqikaer Glacier is higher than most similar values estimated by previous studies on the Tibetan Plateau, perhaps as a result of black carbon enrichment by melt scavenging. Light-absorbing impurities deposited on Keqikaer Glacier appear to mainly originate from central Asia, Siberia, western China(including the Taklimakan Desert) and parts of South Asia in summer, and from the Middle East and Central Asia in winter.A footprint analysis indicates that a large fraction(>60%) of the black carbon contributions on Keqikaer Glacier comes from anthropogenic sources. These results provide a scientific basis for regional mitigation efforts to reduce black carbon.
基金supported by the National Natural Science Foundation of China(Projects Nos.41861006 and 41630750)the Scientific Research Program of Higher Education Institutions of Gansu Province(2018C-02)the Research Ability Promotion Program for Young Teachers of Northwest Normal University(NWNU-LKQN2019-4)。
文摘Forests are important ecosystems for economic and social development.However,the response of tree radial growth to climate has produced‘divergent problems'at high latitudes under global warming.In this study,the response stability and trend of Picea schrenkiana radial growth to variability in climate factors were analyzed in the mid-latitudes of the western Tien Shan Mountains.Radial growth of P.schrenkiana was mainly limited by minimum and mean temperatures.The divergent responses of radial growth occurred in response to the minimum and mean temperatures at the beginning of the growing season(April–May)of the current year,but responses to drought occurred in July–September of the previous year.And the mean and minimum temperatures in June–September of the current year were both stable.Radial growth first increased and then decreased according to the basal area increment,with a gradual increase in temperature.Therefore,forest ecosystems in mountainous arid areas will be increasingly affected by future climate warming.
基金supported by National Natural Science Foundation of China(Grant No.41102129,90714006 and 41002073)the foundation of Fundamental Science on Radioactive Geology and Exploration Technology Laboratory,East China Institute of Technology(Grant No.REGT1207)+1 种基金the Deep Exploration Technology and Experimentation Program of China(Grant No.SinoProbe-08-01-03)projects of China Geological Survey(1212011120135,1212010611803,1212011085474,1212011085473)
文摘The Yunmeng Shan metamorphic core complex (MCC) is composed of the lower plate, the upper plate and the detachment zone. The detachment zone consists of ductile shear zone (mylonite zone), chloritized microbreccias zone and the brittle fault plane. The ductile shear zone contains mylonitic rocks, protomylonites, and mylonites. Finite strain measurements of feldspar porphyroclasts from those rocks using the Rf/φ method show that the strain intensities increase from mylonitic rocks (Es=0.66-0.72) to protomylonites (Es=0.66-0.83), and to mylonites (Es=0.71-1.2). The strain type is close to flatten strain. Kinematic vorticity estimated by Polar Mohr diagrams suggest that foliations and lineation of mylonite (0.47〈Wk〈0.85) record a bulk simple-dominated general shearing at the initial evolution stage of the Yunmeng Shan MCC's detachment zone; and the extensional crenulation cleavage(ecc) (0.34〈Wk〈0.77) recorded a bulk pure-dominated general shearing at the later stage of the evolution. Kinematic vorticity measurements also show that the Yunmeng Shan MCC detachment zone is a result of a combination of simple-dominated general shearing caused by crustal extension at the early stage and pure-dominated general shearing caused by MCC uplifting at the late stage. The ductile thinning estimated by finite strain measurements and estimation of Kinematic vorticity ranges from 52% to 82%, which is the minimum thining estimation. Our studies provide new evidence for mechanisms of the Yunmeng Shan MCC detachement zone.
基金supported by the National Key Basic Research Program of China (No.2015CB453004)National Pre-research Project (No.3210402)
文摘Meso-Cenozoic intracontinental orogenic processes in the Tian Shan orogenic belt have significant effect on the sandstone-hosted uranium deposits in the intramontane basins and those adjacent to the orogen. The Sawafuqi uranium deposit, which is located in the South Tian Shan orogenic belt, is investigated to reveal the relationships between uranium mineralization and orogenies. Recent exploration results show that the Sawafuqi uranium deposit has tabular, stratiform, quasi-stratiform, and lens-like orebodies and various geological characteristics different from typical interlayer oxidation zone sandstone-hosted uranium deposits. Systematic studies of ore samples from the Sawafuqi uranium deposit using a variety of techniques, including thin section observation, a-track radiograph, electron microprobe and scanning electron microscope, suggest that uranium mineralization is closely related to pyrite and organic matter. Mineralization-related alterations in the host rocks are mainly silicification and argillation including kaolinite, illite (and illite-smectite mixed layer) and chlorite. Tree stages of mineralization were identified in the Sawafuqi uranium deposit: (i) uranium-bearing detritus and synsedimentary initial pre-enrichment; (ii) interlayer oxidization zone uranium mineralization; and (iii) vein-type uranium mineralization. The synsedimentary uranium pre-enrichment represents an early uranium enrichment in the Sawafuqi uranium deposit, and interlayer oxidation zone uranium mineralization formed the main orebodies, which are superimposed by the vein-type uranium mineralization. Combining the results of this study with previous studies on the Meso-Cenozoic orogenies of South Tian Shan, it is proposed that the synsedimentary uranium pre-enrichment of the Sawafuqi uranium deposit was caused by Triassic Tian Shan uplift, and the interlayer oxidation zone uranium mineralization occurred during the Eocence-Oligocene period, when tectonism was relatively quiet, whereas the vein-type uranium mineralization took place in relation to the strong orogeny of South Tian Shan since Miocene.
基金supported by the National Natural Foundation of China(No.40872149,40472100 and 40930419)
文摘The uplift of the Ailao Shan-Diancang Shan (ASDS) along the Ailao Shan-Red River (ASRR) shear zone is an important geological event in the southeastern margin of Qinghai-Tibet Plateau tectonic domain in the Late Cenozoic, and it preserves important information on the structures, exhumationai history and tectonic evolution of the ASRR shear zone. The uplift structural mode and uplift timing of the ASDS is currently an important scientific topic for understanding the ASDS formation and late stage movements and evolution of the ASRR shear zone. The formation of the ASDS has been widely considered to be the consequence of the strike-slip movements of the ASRR shear zone. However, the shaping of geomorphic units is generally direct results of the latest tectonic activities. In this study, we investigated the timing and uplift structural mechanism of the ASDS and provided the following lines of supportive evidence. Firstly, the primary tectonic foliation of the ASDS shows significant characteristic variations, with steeply dipping tectonic foliation developed on the east side of the ASDS and the relatively horizontal foliation on the west side. Secondly, from northeast to southwest direction, the deformation and metamorphism gradually weakened and this zone can be further divided into three different metamorphic degree belts. Thirdly, the contact relationship between the ASDS and the Chuxiong basin-Erhai lake is a normal fault contact which can be found on the east side of the ASDS. 40^Ar/^39 Argeochronology suggests that the Diancang Shan had experienced a fast cooling event during 3-4 Ma. The apatite fission track testing method gives the age of 6.6-10.7 Ma in the Diancang Shan and 4.6-8.4 Ma in the Ailao Shan, respectively. Therefore the uplift of the ASDS can be explained by tilted block mode in which the east side was uplifted much higher than the west side, and it is not main reason of the shearing movements of the ASRR shear zone. The most recent uplift stages of the ASDS happened in the Pliocene (3-4 Ma) and Late Miocene (6-10 Ma).
基金funded by the National Natural Science Foundation of China(Grant Nos.41372114,41502116,41340005,41172162,40972083,40841010)a research project of the National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Grant No.SK-0801)
文摘This study examines the relationship between high positive isostatic gravity anomalies (IGA), steep topography and lower crustal extrusion at the eastern margin of the Tibetan Plateau. IGA data has revealed uplift and extrusion of lower crustal flow in the Longmen Shan Mountains (the LMS). Firstly, The high positive IGA zone corresponds to the LMS orogenic belt. It is shown that abrupt changes in IGA correspond to zones of abrupt change of topography, crustal thickness and rock density along the LMS. Secondly, on the basis of the Airy isostasy theory, simulations and inversions of the positive IGA were conducted using three-dimensional bodies. The results indicated that the LMS lacks a mountain root, and that the top surface of the lower crust has been elevated by 11 km, leading to positive IGA, tectonic load and density load. Thirdly, according to Watts's flexural isostasy model, elastic deflection occurs, suggesting that the limited (i.e. narrow) tectonic and density load driven by lower crustal flow in the LMS have led to asymmetric flexural subsidence in the foreland basin and lifting of the forebulge. Finally, based on the correspondence between zones of extremely high positive IGA and the presence of the Precambrian Pengguan-Baoxing complexes in the LMS, the first appearance of erosion gravels from the complexes in the Dayi Conglomerate layer of the Chengdu Basin suggest that positive IGA and lower crustal flow in the LMS took place at 3.6 Ma or slightly earlier.
基金supported by the National Science Foundation of China(41874117)the Second Tibetan Plateau Scientific Expedition and Research Program(SETP)(2019QZKK0901)Natural Science Basic Research Program of Shaanxi(Program No.2023-JC-ON-0309)。
文摘The Laji Shan—Jishi Shan tectonic belt(LJTB),located in the southern part of the northeastern Tibetan Plateau(NETP),is a tectonic window to reveal regional tectonic deformation in the NETP.However,its kinematics in the Holocene remains controversial.We obtain the latest and dense horizontal velocity field based on data collected from our newly constructed and existing GNSS stations.Combined with fault kinematics from geologic observations,we analyze the crustal deformation characteristics along the LJTB.The results show that:(1)The Laji Shan fault(LJF)is inactive,and the northwest-oriented Jishi Shan fault(JSF)exhibits a significant dextral and thrust slip.(2)The transpression along the arc-shaped LJTB accommodates deformation transformation between the dextral Riyue Shan fault and the sinistral west Qinling fault.(3)With the continuous pushing of the Indian plate,internal strains in the Tibetan Plateau are continuously transferred in the northeast via the LJTB as they are gradually dissipated near the LJTB and translated into significant crustal uplift in these regions.