There are five most widely used contact angle schemes in the pseudopotential lattice Boltzmann(LB)model for simulating the wetting phenomenon:The pseudopotential-based scheme(PB scheme),the improved virtualdensity sch...There are five most widely used contact angle schemes in the pseudopotential lattice Boltzmann(LB)model for simulating the wetting phenomenon:The pseudopotential-based scheme(PB scheme),the improved virtualdensity scheme(IVD scheme),the modified pseudopotential-based scheme with a ghost fluid layer constructed by using the fluid layer density above the wall(MPB-C scheme),the modified pseudopotential-based scheme with a ghost fluid layer constructed by using the weighted average density of surrounding fluid nodes(MPB-W scheme)and the geometric formulation scheme(GF scheme).But the numerical stability and accuracy of the schemes for wetting simulation remain unclear in the past.In this paper,the numerical stability and accuracy of these schemes are clarified for the first time,by applying the five widely used contact angle schemes to simulate a two-dimensional(2D)sessile droplet on wall and capillary imbibition in a 2D channel as the examples of static wetting and dynamic wetting simulations respectively.(i)It is shown that the simulated contact angles by the GF scheme are consistent at different density ratios for the same prescribed contact angle,but the simulated contact angles by the PB scheme,IVD scheme,MPB-C scheme and MPB-W scheme change with density ratios for the same fluid-solid interaction strength.The PB scheme is found to be the most unstable scheme for simulating static wetting at increased density ratios.(ii)Although the spurious velocity increases with the increased liquid/vapor density ratio for all the contact angle schemes,the magnitude of the spurious velocity in the PB scheme,IVD scheme and GF scheme are smaller than that in the MPB-C scheme and MPB-W scheme.(iii)The fluid density variation near the wall in the PB scheme is the most significant,and the variation can be diminished in the IVD scheme,MPB-C scheme andMPBWscheme.The variation totally disappeared in the GF scheme.(iv)For the simulation of capillary imbibition,the MPB-C scheme,MPB-Wscheme and GF scheme simulate the dynamics of the liquid-vapor interface well,with the GF scheme being the most accurate.The accuracy of the IVD scheme is low at a small contact angle(44 degrees)but gets high at a large contact angle(60 degrees).However,the PB scheme is the most inaccurate in simulating the dynamics of the liquid-vapor interface.As a whole,it is most suggested to apply the GF scheme to simulate static wetting or dynamic wetting,while it is the least suggested to use the PB scheme to simulate static wetting or dynamic wetting.展开更多
The dynamics of the cavitation bubble collapse is a fundamental issue for the bubble collapse application and prevention. In the present work, the modified forcing scheme for the pseudopotential multi-relaxation-time ...The dynamics of the cavitation bubble collapse is a fundamental issue for the bubble collapse application and prevention. In the present work, the modified forcing scheme for the pseudopotential multi-relaxation-time lattice Boltzmann model developed by Li Q et al. [ Li Q, Luo K H and Li X J 2013 Phys. Rev. E 87 053301] is adopted to develop a cavitation bubble collapse model. In the respects of coexistence curves and Laplace law verification, the improved pseudopotential multi-relaxation-time lattice Boltzmann model is investigated. It is found that the thermodynamic consistency and surface tension are independent of kinematic viscosity. By homogeneous and heterogeneous cavitation simulation, the ability of the present model to describe the cavitation bubble development as well as the cavitation inception is verified. The bubble collapse between two parallel walls is simulated. The dynamic process of a collapsing bubble is consistent with the results from experiments and simulations by other numerical methods. It is demonstrated that the present pseudopotential multirelaxation-time lattice Boltzmann model is applicable and efficient, and the lattice Boltzmann method is an alternative tool for collapsing bubble modeling.展开更多
Cavitation bubble collapse near rough solid wall is modeled by the multi-relaxation-time (MRT) pseudopotential lattice Boltzmann (LB) model. The modified forcing scheme, which can achieve LB model’s thermodynamic con...Cavitation bubble collapse near rough solid wall is modeled by the multi-relaxation-time (MRT) pseudopotential lattice Boltzmann (LB) model. The modified forcing scheme, which can achieve LB model’s thermodynamic consistency by tuning a parameter related with the particle interaction range, is adopted to achieve desired stability and density ratio. The bubble collapse near rough solid wall was simulated by the improved MRT pseudopotential LB model. The mechanism of bubble collapse is studied by investigating the bubble profiles, pressure field and velocity field evolution. The eroding effects of collapsing bubble are analyzed in details. It is found that the process and the effect of the interaction between bubble collapse and rough solid wall are affected seriously by the geometry of solid boundary. At the same time, it demonstrates that the MRT pseudopotential LB model is a potential tool for the investigation of the interaction mechanism between the collapsing bubble and complex geometry boundary.展开更多
A multiphase field model coupled with a lattice Boltzmann(PF-LBM)model is proposed to simulate the distribution mechanism of bubbles and solutes at the solid-liquid interface,the interaction between dendrites and bubb...A multiphase field model coupled with a lattice Boltzmann(PF-LBM)model is proposed to simulate the distribution mechanism of bubbles and solutes at the solid-liquid interface,the interaction between dendrites and bubbles,and the effects of different temperatures,anisotropic strengths and tilting angles on the solidified organization of the SCN-0.24wt.%butanedinitrile alloy during the solidification process.The model adopts a multiphase field model to simulate the growth of dendrites,calculates the growth motions of dendrites based on the interfacial solute equilibrium;and adopts a lattice Boltzmann model(LBM)based on the Shan-Chen multiphase flow to simulate the growth and motions of bubbles in the liquid phase,which includes the interaction between solid-liquid-gas phases.The simulation results show that during the directional growth of columnar dendrites,bubbles first precipitate out slowly at the very bottom of the dendrites,and then rise up due to the different solid-liquid densities and pressure differences.The bubbles will interact with the dendrite in the process of flow migration,such as extrusion,overflow,fusion and disappearance.In the case of wide gaps in the dendrite channels,bubbles will fuse to form larger irregular bubbles,and in the case of dense channels,bubbles will deform due to the extrusion of dendrites.In the simulated region,as the dendrites converge and diverge,the bubbles precipitate out of the dendrites by compression and diffusion,which also causes physical phenomena such as fusion and spillage of the bubbles.These results reveal the physical mechanisms of bubble nucleation,growth and kinematic evolution during solidification and interaction with dendrite growth.展开更多
The interaction between cavitation bubble and solid surface is a fundamental topic which is deeply concerned for the utilization or avoidance of cavitation effect.The complexity of this topic is that the cavitation bu...The interaction between cavitation bubble and solid surface is a fundamental topic which is deeply concerned for the utilization or avoidance of cavitation effect.The complexity of this topic is that the cavitation bubble collapse includes many extreme physical phenomena and variability of different solid surface properties.In the present work,the cavitation bubble collapse in hydrophobic concave is studied using the pseudopotential multi-relaxation-time lattice Boltzmann model(MRT-LB).The model is modified by involving the piecewise linear equation of state and improved forcing scheme.The fluid-solid interaction in the model is employed to adjust the wettability of solid surface.Moreover,the validity of the model is verified by comparison with experimental results and grid-independence verification.Finally,the cavitation bubble collapse in a hydrophobic concave is studied by investigating density field,pressure field,collapse time,and jet velocity.The superimposed effect of the surface hydrophobicity and concave geometry is analyzed and explained in the framework of the pseudopotential LBM.The study shows that the hydrophobic concave can enhance cavitation effect by decreasing cavitation threshold,accelerating collapse and increasing jet velocity.展开更多
The cavitation bubble collapse near a cell can cause damage to the cell wall. This effect has received increasing attention in biomedical supersonics. Based on the lattice Boltzmann method, a multiple-relaxation-time ...The cavitation bubble collapse near a cell can cause damage to the cell wall. This effect has received increasing attention in biomedical supersonics. Based on the lattice Boltzmann method, a multiple-relaxation-time Shan–Chen model is built to study the cavitation bubble collapse. Using this model, the cavitation phenomena induced by density perturbation are simulated to obtain the coexistence densities at certain temperature and to demonstrate the Young–Laplace equation. Then, the cavitation bubble collapse near a curved rigid wall and the consequent high-speed jet towards the wall are simulated. Moreover, the influences of initial pressure difference and bubble-wall distance on the cavitation bubble collapse are investigated.展开更多
The Gibbs-Bogoliubov (GB) inequality is applied to investigate the thermodynamic properties of some equiatomic noble metal alloys in liquid phase such as Au-Cu, Ag-Cu, and Ag-Au using well recognized pseudopotential...The Gibbs-Bogoliubov (GB) inequality is applied to investigate the thermodynamic properties of some equiatomic noble metal alloys in liquid phase such as Au-Cu, Ag-Cu, and Ag-Au using well recognized pseudopotential formalism. For description of the structure, well known Percus-Yevick (PY) hard sphere model is used as a reference system. By applying a variation method the best hard core diameters have been found which correspond to minimum free energy. With this procedure the thermodynamic properties such as entropy and heat of mixing have been computed. The influence of local field correction function viz; Hartree (H), Taylor (T), lehimaru-Utsumi (IU), Farid et al. (F), and Sarkar et al. (S) is also investigated. The computed results of the excess entropy compares favourably in the case of liquid alloys while the agreement with experiment is poor in the case of heats of mixing. This may be due to the sensitivity of the heats of mixing with the potential parameters and the dielectric function.展开更多
To directly incorporate the intermolecular interaction effects into the discrete unified gas-kinetic scheme(DUGKS)for simulations of multiphase fluid flow,we developed a pseudopotential-based DUGKS by coupling the pse...To directly incorporate the intermolecular interaction effects into the discrete unified gas-kinetic scheme(DUGKS)for simulations of multiphase fluid flow,we developed a pseudopotential-based DUGKS by coupling the pseudopotential model that mimics the intermolecular interaction into DUGKS.Due to the flux reconstruction procedure,additional terms that break the isotropic requirements of the pseudopotential model will be introduced.To eliminate the influences of nonisotropic terms,the expression of equilibrium distribution functions is reformulated in a moment-based form.With the isotropy-preserving parameter appropriately tuned,the nonisotropic effects can be properly canceled out.The fundamental capabilities are validated by the flat interface test and the quiescent droplet test.It has been proved that the proposed pseudopotential-based DUGKS managed to produce and maintain isotropic interfaces.The isotropy-preserving property of pseudopotential-based DUGKS in transient conditions is further confirmed by the spinodal decomposition.Stability superiority of the pseudopotential-based DUGKS over the lattice Boltzmann method is also demonstrated by predicting the coexistence densities complying with the van der Waals equation of state.By directly incorporating the intermolecular interactions,the pseudopotential-based DUGKS offers a mesoscopic perspective of understanding multiphase behaviors,which could help gain fresh insights into multiphase fluid flow.展开更多
In this study, we investigate the pseudopotential multiphase model of lattice Boltzmann method(LBM) and incorporate a surface tension term to implement the particle interaction force. By using the Carnahan–Starling...In this study, we investigate the pseudopotential multiphase model of lattice Boltzmann method(LBM) and incorporate a surface tension term to implement the particle interaction force. By using the Carnahan–Starling(CS) equation of state(EOS) with a proper critical pressure–density ratio, a density ratio over 160000 is obtained with satisfactory numerical stability. The added surface tension term offers a flexible choice to adjust the surface tension strength. Numerical tests of the Laplace rule are conducted, proving that smaller spurious velocity and better numerical stability can be acquired as the surface tension becomes stronger. Moreover, by wall adhesion and heterogeneous cavitation tests, the surface tension term shows its practical application in dealing with problems in which the surface tension plays an important role.展开更多
The authors fulfilled calculations of the total energy and electronic states of Cd_(n)Se_(n) nanoparticle:“wurzite”,“sphalerite”and“rock-salt”types of the structure.It was shown that at n≤72 the“rock-salt”typ...The authors fulfilled calculations of the total energy and electronic states of Cd_(n)Se_(n) nanoparticle:“wurzite”,“sphalerite”and“rock-salt”types of the structure.It was shown that at n≤72 the“rock-salt”type is the most favorable energetically.However the extrapolation of the behavior of the energy per Cd-Se atomic pair shows that for n>130(corresponding to a size of about 2 nm),particles with a“wurtzite”structure can be more advantageous.Particles of the“wurtzite”and“rock-salt”types have an electronic structure with an energy gap.For particles with the“wurtzite”structure,the gap width decreases with increasing particle size:from 3.3 eV to 2.2 eV as the particle increases from 0.5 nm to 1.5 nm.For particles of the“rock-salt”type,the gap width grows slightly,remaining about 3 eV.“Sphalerite”-type particles have a metal-like electronic structure.展开更多
The electronic states of“wurtzite”CdS nanoparticles and CdSe/CdS nanosystems with up to 80 pairs of Cd-Se or CdS atoms were calculated.The results for CdS particles were compared with the results obtained earlier fo...The electronic states of“wurtzite”CdS nanoparticles and CdSe/CdS nanosystems with up to 80 pairs of Cd-Se or CdS atoms were calculated.The results for CdS particles were compared with the results obtained earlier for CdSe particles of the same size and with published calculations of other authors.The calculated gap values in the range of 2.84 eV~3.78 eV are typical for CdS particles of studied sizes in accordance with results of published data.The CdSe/CdS nanosystems were considered as layered ones and as quantum dots.The layered CdSe/CdS systems with two-layer CdS coverings can be interpreted in terms of combinations of two semiconductors with different energy band gaps(2.6 eV and 3.3 eV),while analogous systems with single-layer CdS coverings do not demonstrate a two-gap electron structure.Simulation of a CdSe/CdS quantum dot shows that the single-layer CdS shell demonstrates a tendency for the formation of the electronic structure with two energy gaps:approximately of 2.5 eV and 3.0 eV.展开更多
基金sponsored by the National Natural Science Foundation of China under Grant No.52206101Shanghai Sailing Program under Grant No.20YF1431200the Experiments for Space Exploration Program and the Qian Xuesen Laboratory,China Academy of Space Technology under Grant No.TKTSPY-2020-01-01.
文摘There are five most widely used contact angle schemes in the pseudopotential lattice Boltzmann(LB)model for simulating the wetting phenomenon:The pseudopotential-based scheme(PB scheme),the improved virtualdensity scheme(IVD scheme),the modified pseudopotential-based scheme with a ghost fluid layer constructed by using the fluid layer density above the wall(MPB-C scheme),the modified pseudopotential-based scheme with a ghost fluid layer constructed by using the weighted average density of surrounding fluid nodes(MPB-W scheme)and the geometric formulation scheme(GF scheme).But the numerical stability and accuracy of the schemes for wetting simulation remain unclear in the past.In this paper,the numerical stability and accuracy of these schemes are clarified for the first time,by applying the five widely used contact angle schemes to simulate a two-dimensional(2D)sessile droplet on wall and capillary imbibition in a 2D channel as the examples of static wetting and dynamic wetting simulations respectively.(i)It is shown that the simulated contact angles by the GF scheme are consistent at different density ratios for the same prescribed contact angle,but the simulated contact angles by the PB scheme,IVD scheme,MPB-C scheme and MPB-W scheme change with density ratios for the same fluid-solid interaction strength.The PB scheme is found to be the most unstable scheme for simulating static wetting at increased density ratios.(ii)Although the spurious velocity increases with the increased liquid/vapor density ratio for all the contact angle schemes,the magnitude of the spurious velocity in the PB scheme,IVD scheme and GF scheme are smaller than that in the MPB-C scheme and MPB-W scheme.(iii)The fluid density variation near the wall in the PB scheme is the most significant,and the variation can be diminished in the IVD scheme,MPB-C scheme andMPBWscheme.The variation totally disappeared in the GF scheme.(iv)For the simulation of capillary imbibition,the MPB-C scheme,MPB-Wscheme and GF scheme simulate the dynamics of the liquid-vapor interface well,with the GF scheme being the most accurate.The accuracy of the IVD scheme is low at a small contact angle(44 degrees)but gets high at a large contact angle(60 degrees).However,the PB scheme is the most inaccurate in simulating the dynamics of the liquid-vapor interface.As a whole,it is most suggested to apply the GF scheme to simulate static wetting or dynamic wetting,while it is the least suggested to use the PB scheme to simulate static wetting or dynamic wetting.
基金supported by the National Natural Science Foundation of China(Grant Nos.11274092 and 1140040119)the Natural Science Foundation of Jiangsu Province,China(Grant No.SBK2014043338)
文摘The dynamics of the cavitation bubble collapse is a fundamental issue for the bubble collapse application and prevention. In the present work, the modified forcing scheme for the pseudopotential multi-relaxation-time lattice Boltzmann model developed by Li Q et al. [ Li Q, Luo K H and Li X J 2013 Phys. Rev. E 87 053301] is adopted to develop a cavitation bubble collapse model. In the respects of coexistence curves and Laplace law verification, the improved pseudopotential multi-relaxation-time lattice Boltzmann model is investigated. It is found that the thermodynamic consistency and surface tension are independent of kinematic viscosity. By homogeneous and heterogeneous cavitation simulation, the ability of the present model to describe the cavitation bubble development as well as the cavitation inception is verified. The bubble collapse between two parallel walls is simulated. The dynamic process of a collapsing bubble is consistent with the results from experiments and simulations by other numerical methods. It is demonstrated that the present pseudopotential multirelaxation-time lattice Boltzmann model is applicable and efficient, and the lattice Boltzmann method is an alternative tool for collapsing bubble modeling.
文摘Cavitation bubble collapse near rough solid wall is modeled by the multi-relaxation-time (MRT) pseudopotential lattice Boltzmann (LB) model. The modified forcing scheme, which can achieve LB model’s thermodynamic consistency by tuning a parameter related with the particle interaction range, is adopted to achieve desired stability and density ratio. The bubble collapse near rough solid wall was simulated by the improved MRT pseudopotential LB model. The mechanism of bubble collapse is studied by investigating the bubble profiles, pressure field and velocity field evolution. The eroding effects of collapsing bubble are analyzed in details. It is found that the process and the effect of the interaction between bubble collapse and rough solid wall are affected seriously by the geometry of solid boundary. At the same time, it demonstrates that the MRT pseudopotential LB model is a potential tool for the investigation of the interaction mechanism between the collapsing bubble and complex geometry boundary.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.52161002,51661020,and 11364024)the Postdoctoral Science Foundation of China(Grant No.2014M560371)the Funds for Distinguished Young Scientists of Lanzhou University of Technology of China(Grant No.J201304).
文摘A multiphase field model coupled with a lattice Boltzmann(PF-LBM)model is proposed to simulate the distribution mechanism of bubbles and solutes at the solid-liquid interface,the interaction between dendrites and bubbles,and the effects of different temperatures,anisotropic strengths and tilting angles on the solidified organization of the SCN-0.24wt.%butanedinitrile alloy during the solidification process.The model adopts a multiphase field model to simulate the growth of dendrites,calculates the growth motions of dendrites based on the interfacial solute equilibrium;and adopts a lattice Boltzmann model(LBM)based on the Shan-Chen multiphase flow to simulate the growth and motions of bubbles in the liquid phase,which includes the interaction between solid-liquid-gas phases.The simulation results show that during the directional growth of columnar dendrites,bubbles first precipitate out slowly at the very bottom of the dendrites,and then rise up due to the different solid-liquid densities and pressure differences.The bubbles will interact with the dendrite in the process of flow migration,such as extrusion,overflow,fusion and disappearance.In the case of wide gaps in the dendrite channels,bubbles will fuse to form larger irregular bubbles,and in the case of dense channels,bubbles will deform due to the extrusion of dendrites.In the simulated region,as the dendrites converge and diverge,the bubbles precipitate out of the dendrites by compression and diffusion,which also causes physical phenomena such as fusion and spillage of the bubbles.These results reveal the physical mechanisms of bubble nucleation,growth and kinematic evolution during solidification and interaction with dendrite growth.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11874140 and 11574072)the Fund from the State Key Laboratory of Acoustics,Chinese Academy of Sciences(Grant No.SKLA201913)+1 种基金the National Key Research and Development Program of China(Grant No.2016YFC0401600)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(Grant Nos.2018B741X14 and KYCX180552)。
文摘The interaction between cavitation bubble and solid surface is a fundamental topic which is deeply concerned for the utilization or avoidance of cavitation effect.The complexity of this topic is that the cavitation bubble collapse includes many extreme physical phenomena and variability of different solid surface properties.In the present work,the cavitation bubble collapse in hydrophobic concave is studied using the pseudopotential multi-relaxation-time lattice Boltzmann model(MRT-LB).The model is modified by involving the piecewise linear equation of state and improved forcing scheme.The fluid-solid interaction in the model is employed to adjust the wettability of solid surface.Moreover,the validity of the model is verified by comparison with experimental results and grid-independence verification.Finally,the cavitation bubble collapse in a hydrophobic concave is studied by investigating density field,pressure field,collapse time,and jet velocity.The superimposed effect of the surface hydrophobicity and concave geometry is analyzed and explained in the framework of the pseudopotential LBM.The study shows that the hydrophobic concave can enhance cavitation effect by decreasing cavitation threshold,accelerating collapse and increasing jet velocity.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11674173,81627802,11474161,11374155 and 11474001the Qing Lan Project
文摘The cavitation bubble collapse near a cell can cause damage to the cell wall. This effect has received increasing attention in biomedical supersonics. Based on the lattice Boltzmann method, a multiple-relaxation-time Shan–Chen model is built to study the cavitation bubble collapse. Using this model, the cavitation phenomena induced by density perturbation are simulated to obtain the coexistence densities at certain temperature and to demonstrate the Young–Laplace equation. Then, the cavitation bubble collapse near a curved rigid wall and the consequent high-speed jet towards the wall are simulated. Moreover, the influences of initial pressure difference and bubble-wall distance on the cavitation bubble collapse are investigated.
文摘The Gibbs-Bogoliubov (GB) inequality is applied to investigate the thermodynamic properties of some equiatomic noble metal alloys in liquid phase such as Au-Cu, Ag-Cu, and Ag-Au using well recognized pseudopotential formalism. For description of the structure, well known Percus-Yevick (PY) hard sphere model is used as a reference system. By applying a variation method the best hard core diameters have been found which correspond to minimum free energy. With this procedure the thermodynamic properties such as entropy and heat of mixing have been computed. The influence of local field correction function viz; Hartree (H), Taylor (T), lehimaru-Utsumi (IU), Farid et al. (F), and Sarkar et al. (S) is also investigated. The computed results of the excess entropy compares favourably in the case of liquid alloys while the agreement with experiment is poor in the case of heats of mixing. This may be due to the sensitivity of the heats of mixing with the potential parameters and the dielectric function.
基金National Numerical Wind Tunnel Project,the National Natural Science Foundation of China(No.11902266,11902264,12072283)111 Project of China(B17037).
文摘To directly incorporate the intermolecular interaction effects into the discrete unified gas-kinetic scheme(DUGKS)for simulations of multiphase fluid flow,we developed a pseudopotential-based DUGKS by coupling the pseudopotential model that mimics the intermolecular interaction into DUGKS.Due to the flux reconstruction procedure,additional terms that break the isotropic requirements of the pseudopotential model will be introduced.To eliminate the influences of nonisotropic terms,the expression of equilibrium distribution functions is reformulated in a moment-based form.With the isotropy-preserving parameter appropriately tuned,the nonisotropic effects can be properly canceled out.The fundamental capabilities are validated by the flat interface test and the quiescent droplet test.It has been proved that the proposed pseudopotential-based DUGKS managed to produce and maintain isotropic interfaces.The isotropy-preserving property of pseudopotential-based DUGKS in transient conditions is further confirmed by the spinodal decomposition.Stability superiority of the pseudopotential-based DUGKS over the lattice Boltzmann method is also demonstrated by predicting the coexistence densities complying with the van der Waals equation of state.By directly incorporating the intermolecular interactions,the pseudopotential-based DUGKS offers a mesoscopic perspective of understanding multiphase behaviors,which could help gain fresh insights into multiphase fluid flow.
基金Project supported by the National Nature Science Foundation of China(Grant No.51109178)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20116102120009)
文摘In this study, we investigate the pseudopotential multiphase model of lattice Boltzmann method(LBM) and incorporate a surface tension term to implement the particle interaction force. By using the Carnahan–Starling(CS) equation of state(EOS) with a proper critical pressure–density ratio, a density ratio over 160000 is obtained with satisfactory numerical stability. The added surface tension term offers a flexible choice to adjust the surface tension strength. Numerical tests of the Laplace rule are conducted, proving that smaller spurious velocity and better numerical stability can be acquired as the surface tension becomes stronger. Moreover, by wall adhesion and heterogeneous cavitation tests, the surface tension term shows its practical application in dealing with problems in which the surface tension plays an important role.
文摘The authors fulfilled calculations of the total energy and electronic states of Cd_(n)Se_(n) nanoparticle:“wurzite”,“sphalerite”and“rock-salt”types of the structure.It was shown that at n≤72 the“rock-salt”type is the most favorable energetically.However the extrapolation of the behavior of the energy per Cd-Se atomic pair shows that for n>130(corresponding to a size of about 2 nm),particles with a“wurtzite”structure can be more advantageous.Particles of the“wurtzite”and“rock-salt”types have an electronic structure with an energy gap.For particles with the“wurtzite”structure,the gap width decreases with increasing particle size:from 3.3 eV to 2.2 eV as the particle increases from 0.5 nm to 1.5 nm.For particles of the“rock-salt”type,the gap width grows slightly,remaining about 3 eV.“Sphalerite”-type particles have a metal-like electronic structure.
文摘The electronic states of“wurtzite”CdS nanoparticles and CdSe/CdS nanosystems with up to 80 pairs of Cd-Se or CdS atoms were calculated.The results for CdS particles were compared with the results obtained earlier for CdSe particles of the same size and with published calculations of other authors.The calculated gap values in the range of 2.84 eV~3.78 eV are typical for CdS particles of studied sizes in accordance with results of published data.The CdSe/CdS nanosystems were considered as layered ones and as quantum dots.The layered CdSe/CdS systems with two-layer CdS coverings can be interpreted in terms of combinations of two semiconductors with different energy band gaps(2.6 eV and 3.3 eV),while analogous systems with single-layer CdS coverings do not demonstrate a two-gap electron structure.Simulation of a CdSe/CdS quantum dot shows that the single-layer CdS shell demonstrates a tendency for the formation of the electronic structure with two energy gaps:approximately of 2.5 eV and 3.0 eV.