The link between the crustal deformation and mantle kinematics in the Tibetan Plateau has been well known thanks to dense GPS measurements and the relatively detailed anisotropy structure of the lithospheric mantle.Ho...The link between the crustal deformation and mantle kinematics in the Tibetan Plateau has been well known thanks to dense GPS measurements and the relatively detailed anisotropy structure of the lithospheric mantle.However, whether the crust deforms coherently with the upper mantle in the Shan-Thai terrane(also known as the Shan-Thai block) remains unclear.In this study, we investigate the deformation patterns through strain rate tensors in the southeastern Tibetan Plateau derived from the latest GPS measurements and find that in the Shan-Thai terrane the upper crust may be coupled with the lower crust and the upper mantle.The GPS-derived strain rate tensors are in agreement with the slipping patterns and rates of major strike-slip faults in the region.The most prominent shear zone, whose shear strain rates are larger than 100×10^(–9) a^(–1), is about 1000-km-long in the west, trending northward along Sagaing fault to the Eastern Himalayan Syntaxis in the north, with maximum rate of compressive strain up to –240×10^(–9) a^(–1).A secondary shear zone along the Anninghe-Xiaojiang Fault in the east shows segmented shear zones near several conjunctions.While the strain rate along RRF is relatively low due to the low slip rate and low seismicity there, in Lijiang and Tengchong several local shear zones are present under an extensional dominated stress regime that is related to normal faulting earthquakes and volcanism, respectively.Furthermore, by comparing GPS-derived strain rate tensors with earthquake focal mechanisms, we find that 75.8%(100 out of 132) of the earthquake T-axes are consistent with the GPS-derived strain rates.Moreover, we find that the Fast Velocity Direction(FVDs) at three depths beneath the Shan-Thai terrane are consistent with extensional strain rate with gradually increasing angular differences, which are likely resulting from the basal shear forces induced by asthenospheric flow associated with the oblique subduction of the India plate beneath the Shan-Thai terrane.Therefore, in this region the upper crust deformation may be coherent with that of the lower crust and the lithospheric mantle.展开更多
Newly identified radiolarians from ribbon chert in the Mae Hong Son-Mae Sariang area, northwestern Thailand covered Early Carboniferous, Late Permian, and Middle-Late Triassic in age, which indicate that there was a p...Newly identified radiolarians from ribbon chert in the Mae Hong Son-Mae Sariang area, northwestern Thailand covered Early Carboniferous, Late Permian, and Middle-Late Triassic in age, which indicate that there was a pelagic basin during the Late Paleozoic and Triassic in this region together with the published radiolarian biostratigraphic data. This basin is joined with the Chiang Dao and Changning-Menglian oceanic basins, which represent the main oceanic basin of Paleotethyan Archipelago Ocean. The main oceanic basin was situated in the traditional “Shan-Thai Block”. Therefore, “the Shan-Thai Block” was not a single block during that stage, but composed of the Paleotethyan Ocean and two continental terranes that affiliated to Gondwana and Cathysian domains respectively. Keywords Late Paleozoic and Triassic - Radiolarian - northwest Thailand - Shan-Thai Block - Paleotethys展开更多
基金partially supported by National Natural Science Foundation of China (grants 41474090 and 41490610)the financial support by the China Scholarship Councilthe Basic Research Project of Institute of Geology, CEA (IGCEA1314)
文摘The link between the crustal deformation and mantle kinematics in the Tibetan Plateau has been well known thanks to dense GPS measurements and the relatively detailed anisotropy structure of the lithospheric mantle.However, whether the crust deforms coherently with the upper mantle in the Shan-Thai terrane(also known as the Shan-Thai block) remains unclear.In this study, we investigate the deformation patterns through strain rate tensors in the southeastern Tibetan Plateau derived from the latest GPS measurements and find that in the Shan-Thai terrane the upper crust may be coupled with the lower crust and the upper mantle.The GPS-derived strain rate tensors are in agreement with the slipping patterns and rates of major strike-slip faults in the region.The most prominent shear zone, whose shear strain rates are larger than 100×10^(–9) a^(–1), is about 1000-km-long in the west, trending northward along Sagaing fault to the Eastern Himalayan Syntaxis in the north, with maximum rate of compressive strain up to –240×10^(–9) a^(–1).A secondary shear zone along the Anninghe-Xiaojiang Fault in the east shows segmented shear zones near several conjunctions.While the strain rate along RRF is relatively low due to the low slip rate and low seismicity there, in Lijiang and Tengchong several local shear zones are present under an extensional dominated stress regime that is related to normal faulting earthquakes and volcanism, respectively.Furthermore, by comparing GPS-derived strain rate tensors with earthquake focal mechanisms, we find that 75.8%(100 out of 132) of the earthquake T-axes are consistent with the GPS-derived strain rates.Moreover, we find that the Fast Velocity Direction(FVDs) at three depths beneath the Shan-Thai terrane are consistent with extensional strain rate with gradually increasing angular differences, which are likely resulting from the basal shear forces induced by asthenospheric flow associated with the oblique subduction of the India plate beneath the Shan-Thai terrane.Therefore, in this region the upper crust deformation may be coherent with that of the lower crust and the lithospheric mantle.
基金supported by the National Natural Science Foundation of China(Grant No.4000541529 and 40372105)DAAD of Germany,and Suranaree University of Technology,Thailand.
文摘Newly identified radiolarians from ribbon chert in the Mae Hong Son-Mae Sariang area, northwestern Thailand covered Early Carboniferous, Late Permian, and Middle-Late Triassic in age, which indicate that there was a pelagic basin during the Late Paleozoic and Triassic in this region together with the published radiolarian biostratigraphic data. This basin is joined with the Chiang Dao and Changning-Menglian oceanic basins, which represent the main oceanic basin of Paleotethyan Archipelago Ocean. The main oceanic basin was situated in the traditional “Shan-Thai Block”. Therefore, “the Shan-Thai Block” was not a single block during that stage, but composed of the Paleotethyan Ocean and two continental terranes that affiliated to Gondwana and Cathysian domains respectively. Keywords Late Paleozoic and Triassic - Radiolarian - northwest Thailand - Shan-Thai Block - Paleotethys