Background Zinc glycine chelate(Zn-Gly)has anti-inflammation and growth-promoting properties;however,the mechanism of Zn-Gly contribution to gut barrier function in Cherry Valley ducks during intestinal inflammation i...Background Zinc glycine chelate(Zn-Gly)has anti-inflammation and growth-promoting properties;however,the mechanism of Zn-Gly contribution to gut barrier function in Cherry Valley ducks during intestinal inflammation is unknown.Three-hundred 1-day-old ducks were divided into 5 groups(6 replicates and 10 ducks per replicate)in a completely randomized design:the control and dextran sulfate sodium(DSS)groups were fed a corn-soybean meal basal diet,and experimental groups received supplements of 70,120 or 170 mg/kg Zn in form of Zn-Gly.The DSS and treatment groups were given 2 mL of 0.45 g/mL DSS daily during d 15–21,and the control group received normal saline.The experiment lasted 21 d.Results Compared with DSS group,70,120 and 170 mg/kg Zn significantly increased body weight(BW),villus height and the ratio of villus to crypt,and significantly decreased the crypt depth of jejunum at 21 d.The number of goblet cells in jejunal villi in the Zn-Gly group was significantly increased by periodic acid-Schiff staining.Compared with control,the content of intestinal permeability marker D-lactic acid(D-LA)and fluxes of fluorescein isothiocyanate(FITC-D)in plasma of DSS group significantly increased,and 170 mg/kg Zn supplementation significantly decreased the D-LA content and FITC-D fluxes.Compared with control,contents of plasma,jejunum endotoxin and jejunum pro-inflammatory factors IL-1β,IL-6 and TNF-αwere significantly increased in DSS group,and were significantly decreased by 170 mg/kg Zn supplementation.Dietary Zn significantly increased the contents of anti-inflammatory factors IL-10,IL-22 and sIgA and IgG in jejunum.Real-time PCR and Western blot results showed that 170 mg/kg Zn supplementation significantly increased mRNA expression levels of CLDN-1 and expression of OCLN protein in jejunum,and decreased gene and protein expression of CLDN-2 compared with DSS group.The 120 mg/kg Zn significantly promoted the expressions of IL-22 and IgA.Dietary Zn-Gly supplementation significantly decreased pro-inflammatory genes IL-8 and TNF-αexpression levels and TNF-αprotein expression in jejunum.Additionally,Zn significantly reduced the gene and protein expression of TLR4,MYD88 and NF-κB p65.Conclusions Zn-Gly improved duck BW and alleviated intestinal injury by regulating intestinal morphology,barrier function and gut inflammation-related signal pathways TLR4/MYD88/NF-κB p65.展开更多
Multidrug-resistant(MDR)Enterobacteriaceae critically threaten duck farming and public health.The phenotypes,genotypes,and associated mobile genetic elements(MGEs)of MDR Enterobacteriaceae isolated from 6 duck farms i...Multidrug-resistant(MDR)Enterobacteriaceae critically threaten duck farming and public health.The phenotypes,genotypes,and associated mobile genetic elements(MGEs)of MDR Enterobacteriaceae isolated from 6 duck farms in Zhejiang Province,China,were investigated.A total of 215 isolates were identified as Escherichia coli(64.65%),Klebsiella pneumoniae(12.09%),Proteus mirabilis(10.23%),Salmonella(8.84%),and Enterobacter cloacae(4.19%).Meanwhile,all isolates were resistant to at least two antibiotics.Most isolates carried tet(A)(85.12%),blaTEM(78.60%)and sul1(67.44%)resistance genes.Gene co-occurrence analysis showed that the resistance genes were associated with IS26 and integrons.A conjugative IncFII plasmid pSDM004 containing all the above MGEs was detected in Proteus mirabilis isolate SDM004.This isolate was resistant to 18 antibiotics and carried the blaNDM-5 gene.MGEs,especially plasmids,are the primary antibiotic resistance gene transmission route in duck farms.These findings provide a theoretical basis for the rational use of antibiotics in farms which are substantial for evaluating public health and food safety.展开更多
Rivers are important habitats for wintering waterbirds.However,they are easily influenced by natural and human activities.An important approach for waterbirds to adapt to habitats is adjusting the activity time and en...Rivers are important habitats for wintering waterbirds.However,they are easily influenced by natural and human activities.An important approach for waterbirds to adapt to habitats is adjusting the activity time and energy expenditure allocation of diurnal behavior.The compensatory foraging hypothesis predicts that increased energy expenditure leads to longer foraging time,which in turn increases food intake and helps maintain a constant energy balance.However,it is unclear whether human-disturbed habitats result in increased energy expenditure related to safety or foraging.In this study,the scan sample method was used to observe the diurnal behavior of the wintering Spot-billed Duck(Anas poecilorhyncha) in two rivers in the Xin’an River Basin from October 2021 to March 2022.The allocation of time and energy expenditure for activity in both normal and disturbed environments was calculated.The results showed that foraging accounted for the highest percentage of time and energy expenditure.Additionally,foraging decreased in the disturbed environment than that in the normal environment.Resting behavior showed the opposite trend,while other behaviors were similar in both environments.The total diurnal energy expenditure of ducks in the disturbed environment was greater than that in the normal environment,with decreased foraging and resting time percentage and increased behaviors related to immediate safety(swimming and alert) and comfort.These results oppose the compensatory foraging hypothesis in favor of increased security.The optimal diurnal energy expenditure model included river width and water depth,which had a positive relationship;an increase in either of these two factors resulted in an increase in energy expenditure.This study provides a better understanding of energy allocation strategies underlying the superficial time allocation of wintering waterbirds according to environmental conditions.Exploring these changes can help understand the maximum fitness of wintering waterbirds in response to nature and human influences.展开更多
Background Carcass traits are crucial for broiler ducks,but carcass traits can only be measured postmortem.Genomic selection(GS)is an effective approach in animal breeding to improve selection and reduce costs.However...Background Carcass traits are crucial for broiler ducks,but carcass traits can only be measured postmortem.Genomic selection(GS)is an effective approach in animal breeding to improve selection and reduce costs.However,the performance of genomic prediction in duck carcass traits remains largely unknown.Results In this study,we estimated the genetic parameters,performed GS using different models and marker densi-ties,and compared the estimation performance between GS and conventional BLUP on 35 carcass traits in an F2 population of ducks.Most of the cut weight traits and intestine length traits were estimated to be high and moder-ate heritabilities,respectively,while the heritabilities of percentage slaughter traits were dynamic.The reliability of genome prediction using GBLUP increased by an average of 0.06 compared to the conventional BLUP method.The Permutation studies revealed that 50K markers had achieved ideal prediction reliability,while 3K markers still achieved 90.7%predictive capability would further reduce the cost for duck carcass traits.The genomic relationship matrix nor-malized by our true variance method instead of the widely used 2pi(1-pi)could achieve an increase in prediction reliability in most traits.We detected most of the bayesian models had a better performance,especially for BayesN.Compared to GBLUP,BayesN can further improve the predictive reliability with an average of 0.06 for duck carcass traits.Conclusion This study demonstrates genomic selection for duck carcass traits is promising.The genomic prediction can be further improved by modifying the genomic relationship matrix using our proposed true variance method and several Bayesian models.Permutation study provides a theoretical basis for the fact that low-density arrays can be used to reduce genotype costs in duck genome selection.展开更多
Coriander(Coriandrum sativum L.)is recognized for its antioxidant property,as a kind of natural phenolic-rich ingredient.Polycyclic aromatic hydrocarbons(PAHs)present a class of heat-driven hazards in foods,especially...Coriander(Coriandrum sativum L.)is recognized for its antioxidant property,as a kind of natural phenolic-rich ingredient.Polycyclic aromatic hydrocarbons(PAHs)present a class of heat-driven hazards in foods,especially the processed meat.In this study,the effect of coriander root and leaf extract on the formation and inhibition of PAH8 in roasted duck wings was firstly investigated.Coriander root extract(CRE)and coriander leaf extract(CLE)with five concentration groups(200,400,600,800,1000 mg/L)were prepared respectively to marinate the duck wings.CRE marinade exhibited greater inhibitory effect on PAH8 formation in roasted duck wings that ranged from 65.0%-87.4%.The electron spin resonance study indicated a significantly positive correlation between PAH8 and free radical level,suggesting the participation of radicals in PAHs formation.Also,it was speculated that the inhibitory effect on PAH8 was related to the phenolic compounds identified in coriander marinades.CRE made greater inhibitory effect on the formation of PAH8 and could be considered as a kind of natural source to mitigate PAHs in heat-processed meat products.展开更多
Background:Most duck eggs possess a fishy odor,indicating that ducks generally exhibit impaired trimethylamine(TMA)metabolism.TMA accumulation is responsible for this unpleasant odor,and TMA metabolism plays an essen-...Background:Most duck eggs possess a fishy odor,indicating that ducks generally exhibit impaired trimethylamine(TMA)metabolism.TMA accumulation is responsible for this unpleasant odor,and TMA metabolism plays an essen-tial role in trimethylaminuria(TMAU),also known as fish odor syndrome.In this study,we focused on the unusual TMA metabolism mechanism in ducks,and further explored the unclear reasons leading to the debilitating TMA metabolism.Methods:To achieve this,transcriptome,proteome,and metagenome analyses were first integrated based on the constructed duck populations with high and low TMA metabolism abilities.Additionally,further experiments were conducted to validate the hypothesis regarding the limited flavin-containing monooxygenase 3(FMO3)metabolism ability of ducks.Results:The study demonstrated that liver FMO3 and cecal microbes,including Akkermansia and Mucispirillum,par-ticipated in TMA metabolism in ducks.The limited oxidation ability of FMO3 explains the weakening of TMA metabo-lism in ducks.Nevertheless,it decreases lipid deposition and increases antibacterial activity,contributing to its survival and reproduction during the evolutionary adaptation process.Conclusions:This study demonstrated the function of FMO3 and intestinal microbes in regulating TMA metabolism and illustrated the biological significance of FMO3 impairment in ducks.展开更多
When we talk about roast duck,most of the people would think of Beijing Roast Duck.Yes,Beijing Roast Duck is delicious definitely.However,today I’d like to talk about Zhengzhou Roast Duck,which is in my hometown.The ...When we talk about roast duck,most of the people would think of Beijing Roast Duck.Yes,Beijing Roast Duck is delicious definitely.However,today I’d like to talk about Zhengzhou Roast Duck,which is in my hometown.The most famous restaurant of roast duck in Zhengzhou is located in Renmin Road.Many people in Zhengzhou and the tourists who come to Zhengzhou would like to taste the roast duck there.展开更多
鸭蛋裂纹检测技术对于禽蛋加工工厂实现智能化蛋品检测、分级具有重要意义。该研究针对鸭蛋裂纹检测流程复杂、计算量大、模型尺寸大等问题,提出了一种基于改进YOLOv5l(you only look once version5 large)的轻量裂纹检测算法,通过在黑...鸭蛋裂纹检测技术对于禽蛋加工工厂实现智能化蛋品检测、分级具有重要意义。该研究针对鸭蛋裂纹检测流程复杂、计算量大、模型尺寸大等问题,提出了一种基于改进YOLOv5l(you only look once version5 large)的轻量裂纹检测算法,通过在黑暗条件下使用LED灯照射鸭蛋,根据裂纹蛋壳与完好蛋壳透光性不同产生的图像差异进行检测。通过在YOLOv5中引入Ghost_conv模块,大大减少了模型的浮点计算量和参数量,并在模型的骨干网络中加入ECA(efficient channel attention)注意力机制以及使用多尺度特征融合方法 BIFPN(bi-directional feature pyramid network),增加模型对有效信息的关注度,以提高算法检测精度。同时使用CIoU与α-IoU损失函数融合后替代YOLOv5原始GIoU函数加速回归预测。利用自建的鸭蛋裂纹数据集验证改进后模型的性能,结果表明,本研究提出的改进YOLOv5l网络模型检测精准率为93.8%,与原始YOLOv5l模型相比,检测精度提高了6.3个百分点,参数量和浮点计算量分别减少了30.6%、39.4%。检测帧速率为28.954帧/s,较原始YOLOv5l模型仅下降3.824帧/s。与其他的目标检测常用网络SSD(single shot multibox detector)、YOLOv4、Faster-RCNN(faster region convolutional neural networks)相比,精度分别提高了13.1、12.5、8.2个百分点。本研究提出的方法能够在低硬件资源条件下进行高精度检测,可为实际场景应用提供解决方案和技术支持。展开更多
基金supported by the Natural Science Foundation of Sichuan Province(No.2022NSFSC0060)。
文摘Background Zinc glycine chelate(Zn-Gly)has anti-inflammation and growth-promoting properties;however,the mechanism of Zn-Gly contribution to gut barrier function in Cherry Valley ducks during intestinal inflammation is unknown.Three-hundred 1-day-old ducks were divided into 5 groups(6 replicates and 10 ducks per replicate)in a completely randomized design:the control and dextran sulfate sodium(DSS)groups were fed a corn-soybean meal basal diet,and experimental groups received supplements of 70,120 or 170 mg/kg Zn in form of Zn-Gly.The DSS and treatment groups were given 2 mL of 0.45 g/mL DSS daily during d 15–21,and the control group received normal saline.The experiment lasted 21 d.Results Compared with DSS group,70,120 and 170 mg/kg Zn significantly increased body weight(BW),villus height and the ratio of villus to crypt,and significantly decreased the crypt depth of jejunum at 21 d.The number of goblet cells in jejunal villi in the Zn-Gly group was significantly increased by periodic acid-Schiff staining.Compared with control,the content of intestinal permeability marker D-lactic acid(D-LA)and fluxes of fluorescein isothiocyanate(FITC-D)in plasma of DSS group significantly increased,and 170 mg/kg Zn supplementation significantly decreased the D-LA content and FITC-D fluxes.Compared with control,contents of plasma,jejunum endotoxin and jejunum pro-inflammatory factors IL-1β,IL-6 and TNF-αwere significantly increased in DSS group,and were significantly decreased by 170 mg/kg Zn supplementation.Dietary Zn significantly increased the contents of anti-inflammatory factors IL-10,IL-22 and sIgA and IgG in jejunum.Real-time PCR and Western blot results showed that 170 mg/kg Zn supplementation significantly increased mRNA expression levels of CLDN-1 and expression of OCLN protein in jejunum,and decreased gene and protein expression of CLDN-2 compared with DSS group.The 120 mg/kg Zn significantly promoted the expressions of IL-22 and IgA.Dietary Zn-Gly supplementation significantly decreased pro-inflammatory genes IL-8 and TNF-αexpression levels and TNF-αprotein expression in jejunum.Additionally,Zn significantly reduced the gene and protein expression of TLR4,MYD88 and NF-κB p65.Conclusions Zn-Gly improved duck BW and alleviated intestinal injury by regulating intestinal morphology,barrier function and gut inflammation-related signal pathways TLR4/MYD88/NF-κB p65.
基金supported by the National Natural Science Foundation of China(32172188)Science and Technology Cooperation Project of ZheJiang Province(2023SNJF058-3)。
文摘Multidrug-resistant(MDR)Enterobacteriaceae critically threaten duck farming and public health.The phenotypes,genotypes,and associated mobile genetic elements(MGEs)of MDR Enterobacteriaceae isolated from 6 duck farms in Zhejiang Province,China,were investigated.A total of 215 isolates were identified as Escherichia coli(64.65%),Klebsiella pneumoniae(12.09%),Proteus mirabilis(10.23%),Salmonella(8.84%),and Enterobacter cloacae(4.19%).Meanwhile,all isolates were resistant to at least two antibiotics.Most isolates carried tet(A)(85.12%),blaTEM(78.60%)and sul1(67.44%)resistance genes.Gene co-occurrence analysis showed that the resistance genes were associated with IS26 and integrons.A conjugative IncFII plasmid pSDM004 containing all the above MGEs was detected in Proteus mirabilis isolate SDM004.This isolate was resistant to 18 antibiotics and carried the blaNDM-5 gene.MGEs,especially plasmids,are the primary antibiotic resistance gene transmission route in duck farms.These findings provide a theoretical basis for the rational use of antibiotics in farms which are substantial for evaluating public health and food safety.
基金supported by the National Natural Science Foundation of China (Grant No. 32100400)Huangshan University Startup Project of Scientific Research (2020xkjq013)Environment Conservation Research Centre of Xin’an River Basin (kypt202002)。
文摘Rivers are important habitats for wintering waterbirds.However,they are easily influenced by natural and human activities.An important approach for waterbirds to adapt to habitats is adjusting the activity time and energy expenditure allocation of diurnal behavior.The compensatory foraging hypothesis predicts that increased energy expenditure leads to longer foraging time,which in turn increases food intake and helps maintain a constant energy balance.However,it is unclear whether human-disturbed habitats result in increased energy expenditure related to safety or foraging.In this study,the scan sample method was used to observe the diurnal behavior of the wintering Spot-billed Duck(Anas poecilorhyncha) in two rivers in the Xin’an River Basin from October 2021 to March 2022.The allocation of time and energy expenditure for activity in both normal and disturbed environments was calculated.The results showed that foraging accounted for the highest percentage of time and energy expenditure.Additionally,foraging decreased in the disturbed environment than that in the normal environment.Resting behavior showed the opposite trend,while other behaviors were similar in both environments.The total diurnal energy expenditure of ducks in the disturbed environment was greater than that in the normal environment,with decreased foraging and resting time percentage and increased behaviors related to immediate safety(swimming and alert) and comfort.These results oppose the compensatory foraging hypothesis in favor of increased security.The optimal diurnal energy expenditure model included river width and water depth,which had a positive relationship;an increase in either of these two factors resulted in an increase in energy expenditure.This study provides a better understanding of energy allocation strategies underlying the superficial time allocation of wintering waterbirds according to environmental conditions.Exploring these changes can help understand the maximum fitness of wintering waterbirds in response to nature and human influences.
基金supported by grants from the Key Technologies Research on New Breed of Broiler Poultry by Integration of Breeding,Reproduction and Promotion(2021CXGC010805-02)Taishan Industry Leadership Talent Project of Shandong province in China(TSCY20190108)+1 种基金China Agriculture Research System of MOF and MARA(CARS-42)the Science and Technology Innovation Project of the Chinese Academy of Agricultural Sciences(CXGC-IAS-09).
文摘Background Carcass traits are crucial for broiler ducks,but carcass traits can only be measured postmortem.Genomic selection(GS)is an effective approach in animal breeding to improve selection and reduce costs.However,the performance of genomic prediction in duck carcass traits remains largely unknown.Results In this study,we estimated the genetic parameters,performed GS using different models and marker densi-ties,and compared the estimation performance between GS and conventional BLUP on 35 carcass traits in an F2 population of ducks.Most of the cut weight traits and intestine length traits were estimated to be high and moder-ate heritabilities,respectively,while the heritabilities of percentage slaughter traits were dynamic.The reliability of genome prediction using GBLUP increased by an average of 0.06 compared to the conventional BLUP method.The Permutation studies revealed that 50K markers had achieved ideal prediction reliability,while 3K markers still achieved 90.7%predictive capability would further reduce the cost for duck carcass traits.The genomic relationship matrix nor-malized by our true variance method instead of the widely used 2pi(1-pi)could achieve an increase in prediction reliability in most traits.We detected most of the bayesian models had a better performance,especially for BayesN.Compared to GBLUP,BayesN can further improve the predictive reliability with an average of 0.06 for duck carcass traits.Conclusion This study demonstrates genomic selection for duck carcass traits is promising.The genomic prediction can be further improved by modifying the genomic relationship matrix using our proposed true variance method and several Bayesian models.Permutation study provides a theoretical basis for the fact that low-density arrays can be used to reduce genotype costs in duck genome selection.
基金funded by the National Key R&D Program of China(2016YFD040040303).
文摘Coriander(Coriandrum sativum L.)is recognized for its antioxidant property,as a kind of natural phenolic-rich ingredient.Polycyclic aromatic hydrocarbons(PAHs)present a class of heat-driven hazards in foods,especially the processed meat.In this study,the effect of coriander root and leaf extract on the formation and inhibition of PAH8 in roasted duck wings was firstly investigated.Coriander root extract(CRE)and coriander leaf extract(CLE)with five concentration groups(200,400,600,800,1000 mg/L)were prepared respectively to marinate the duck wings.CRE marinade exhibited greater inhibitory effect on PAH8 formation in roasted duck wings that ranged from 65.0%-87.4%.The electron spin resonance study indicated a significantly positive correlation between PAH8 and free radical level,suggesting the participation of radicals in PAHs formation.Also,it was speculated that the inhibitory effect on PAH8 was related to the phenolic compounds identified in coriander marinades.CRE made greater inhibitory effect on the formation of PAH8 and could be considered as a kind of natural source to mitigate PAHs in heat-processed meat products.
基金supported by the National Natural Science Foundation of China(31672408)the China Agriculture Research Systems(CARS-40)+1 种基金the National Key Research and Development Program of China(2021YFD1200803)the Program for Changjiang Scholars and Innovative Research Team in University(IRT_15R62).
文摘Background:Most duck eggs possess a fishy odor,indicating that ducks generally exhibit impaired trimethylamine(TMA)metabolism.TMA accumulation is responsible for this unpleasant odor,and TMA metabolism plays an essen-tial role in trimethylaminuria(TMAU),also known as fish odor syndrome.In this study,we focused on the unusual TMA metabolism mechanism in ducks,and further explored the unclear reasons leading to the debilitating TMA metabolism.Methods:To achieve this,transcriptome,proteome,and metagenome analyses were first integrated based on the constructed duck populations with high and low TMA metabolism abilities.Additionally,further experiments were conducted to validate the hypothesis regarding the limited flavin-containing monooxygenase 3(FMO3)metabolism ability of ducks.Results:The study demonstrated that liver FMO3 and cecal microbes,including Akkermansia and Mucispirillum,par-ticipated in TMA metabolism in ducks.The limited oxidation ability of FMO3 explains the weakening of TMA metabo-lism in ducks.Nevertheless,it decreases lipid deposition and increases antibacterial activity,contributing to its survival and reproduction during the evolutionary adaptation process.Conclusions:This study demonstrated the function of FMO3 and intestinal microbes in regulating TMA metabolism and illustrated the biological significance of FMO3 impairment in ducks.
文摘When we talk about roast duck,most of the people would think of Beijing Roast Duck.Yes,Beijing Roast Duck is delicious definitely.However,today I’d like to talk about Zhengzhou Roast Duck,which is in my hometown.The most famous restaurant of roast duck in Zhengzhou is located in Renmin Road.Many people in Zhengzhou and the tourists who come to Zhengzhou would like to taste the roast duck there.