BL10U2 is an undulator-based macromolecular crystallography(MX)beamline located at the 3.5-GeV Shanghai Synchrotron Radiation Facility.BL10U2 is specifically designed for conducting routine and biosafety level-2(BSL-2...BL10U2 is an undulator-based macromolecular crystallography(MX)beamline located at the 3.5-GeV Shanghai Synchrotron Radiation Facility.BL10U2 is specifically designed for conducting routine and biosafety level-2(BSL-2)MX experiments utilizing high-flux tunable X-rays with energies from 7 to 18 keV,providing a beam spot size of 20μm(horizontal)×10μm(vertical)at the sample point.Certification by the Shanghai Pudong Municipal Health Commission confirmed the capability to perform BSL-2 MX experiments.The beamline is currently equipped with an Eiger X 16 M detector and two newly developed in-house high-precision diffractometers that can be switched to perform conventional or in situ crystal diffraction experiments.An automatic sample changer developed in-house allows fast sample exchange in less than 30 s,supporting high-throughput MX experimentation and rapid crystal screening.Data collection from both the diffractometer and detector was controlled by an in-house developed data collection software(Finback)with a user-friendly interface for convenient operation.This study presents a comprehensive overview of the facilities,experimental methods,and performance characteristics of the BL10U2 beamline.展开更多
Macromolecular crystallography beamline BL17U1 at the Shanghai Synchrotron Radiation Facility has been relocated,upgraded,and given a new ID(BL02U1).It now delivers X-rays in the energy range of 6–16 keV,with a focus...Macromolecular crystallography beamline BL17U1 at the Shanghai Synchrotron Radiation Facility has been relocated,upgraded,and given a new ID(BL02U1).It now delivers X-rays in the energy range of 6–16 keV,with a focused beam of 11.6μm×4.8μm and photon flux greater than 1012 phs/s.The high credibility and stability of the beam and good timing synchronization of the equipment significantly improve the experimental efficiency.Since June 2021,when it officially opened to users,over 4200 h of beamtime have been provided to over 200 research groups to collect data at the beamline.Its good performance and stable operation have led to the resolution of several structures based on data collected at the beamline.展开更多
The protein complex crystallographic beamline BL19U1 at the Shanghai Synchrotron Radiation Facility is one of the five beamlines dedicated to protein sciences operated by National Facility for Protein Science(Shanghai...The protein complex crystallographic beamline BL19U1 at the Shanghai Synchrotron Radiation Facility is one of the five beamlines dedicated to protein sciences operated by National Facility for Protein Science(Shanghai,China).The beamline,which features a small-gap invacuum undulator,has been officially open to users since March 2015.This beamline delivers X-ray in the energy range 7–15 keV.With its high flux,low divergence beam and a large active area detector,BL19U1 is designed for proteins with large molecular weight and large crystallographic unit cell dimensions.Good performance and stable operation of the beamline have allowed the number of Protein Data Bank(PDB)depositions and the number of articles published based on data collected at this beamline to increase steadily.To date,over 300 research groups have collected data at the beamline.More than 600 PDB entries have been deposited at the PDB(www.pdb.org).More than 300 papers have been published that include data collected at the beamline,including 21 research articles published in the top-level journals Cell,Nature,and Science.展开更多
We report the design of a wide-range energy material beamline(E-line) with multiple experimental techniques at the Shanghai Synchrotron Radiation Facility.The undulators consisted of an elliptically polarizing undulat...We report the design of a wide-range energy material beamline(E-line) with multiple experimental techniques at the Shanghai Synchrotron Radiation Facility.The undulators consisted of an elliptically polarizing undulator and in-vacuum undulator that generate the soft and hard X-rays, respectively. The beamline covered a wide energy range from 130 to 18 ke V with both a high photon flux([ 10^(12) phs/s with exit silt 30 lm in soft X-ray and [ 5 9 10^(12) phs/s in hard X-ray within 0.1%BW bandwidth) and promising resolving power(maximum E/DE [ 15,000 in soft X-ray with exit silt 30 lm and [6000 in hard X-ray). Moreover, the beam spots from the soft and hard X-rays were focused to the same sample position with a high overlap ratio, so that the surfaces, interfaces, and bulk properties were characterized in situ by changing the probing depth.展开更多
Beam lifetime is dominated by Touschek scattering at the Shanghai Synchrotron Radiation Facility(SSRF).Touschek loss rate is affected by probability for scattering beyond the RF acceptance and the volume charge densit...Beam lifetime is dominated by Touschek scattering at the Shanghai Synchrotron Radiation Facility(SSRF).Touschek loss rate is affected by probability for scattering beyond the RF acceptance and the volume charge density of the bench.In the phaseⅡupgrade of the SSRF,a third harmonic superconducting cavity will be used to enhance the Touschek lifetime by lengthening the bunches.The Touschek lifetime improvement factor is affected by the voltage of a harmonic cavity.To stabilize the cavity voltage,a tuning control system was designed to control it.The design of the tuning control system was based on the SSRF third-generation low-level RF control system.Some hardware and specialized algorithms were redesigned to fit the harmonic cavity control.The design of the tuning control system is complete,and the control system has been tested.The test result shows that the fluctuation of amplitude is<±0.34%within 1.5 h,which satisfies the stability requirement.展开更多
From a safety point of view, it is important to study the damages and reliability of molten salt reactor structural alloy materials, which are subjected to extreme environments due to neutron irradiation, molten salt ...From a safety point of view, it is important to study the damages and reliability of molten salt reactor structural alloy materials, which are subjected to extreme environments due to neutron irradiation, molten salt corrosion, fission product attacks, thermal stress, and even combinations of these. In the past few years, synchrotron radiation-based materials characterization techniques have proven to be effective in revealing the microstructural evolution and failure mechanisms of the alloys under surrogating operation conditions. Here, we review the recent progress in the investigations of molten salt corrosion,tellurium(Te) corrosion, and alloy design. The valence states and distribution of chromium(Cr) atoms, and the diffusion and local atomic structure of Te atoms near the surface of corroded alloys have been investigated using synchrotron radiation techniques, which considerably deepen the understandings on the molten salt and Te corrosion behaviors. Furthermore, the structure and size distribution of the second phases in the alloys have been obtained, which are helpful for the future development of new alloy materials.展开更多
The Shanghai Laser Electron Gamma Source(SLEGS, located in BL03SSID) beamline at the Shanghai Synchrotron Radiation Facility(SSRF) is a Laser Compton Scattering(LCS) gamma source used for the investigation of nuclear ...The Shanghai Laser Electron Gamma Source(SLEGS, located in BL03SSID) beamline at the Shanghai Synchrotron Radiation Facility(SSRF) is a Laser Compton Scattering(LCS) gamma source used for the investigation of nuclear structure, which is in extensive demand in fields such as nuclear astrophysics, nuclear cluster structure, polarization physics, and nuclear energy. The beamline is based on the inverse Compton scattering of 10640 nm photons on 3.5 GeV electrons and a gamma source with variable energy by changing the scattering angle from 20° to 160°. γ rays of 0.25-21.1 MeV can be extracted by the scheme consisting of the interaction chamber, coarse collimator, fine collimator, and attenuator. The maximum photon flux for 180° is approximately 10~7 photons/s at the target at 21.7 MeV, with a 3-mm-diameter beam. The beamline was equipped with four types of spectrometers for experiments in( γ,γ'),( γ,n),( γ,p), and( γ,α). At present, Nuclear Resonance Fluorescence(NRF) spectrometry, Flat-Efficiency neutron Detector(FED) spectrometry, neutron Time-Of-Flight(TOF) spectrometry, and Light-Charged Particle(LCP) spectrometry methods have been developed.展开更多
The ultrahard X-ray multifunctional application beamline(BL12SW)is a phase-II beamline project at the Shanghai Syn-chrotron Radiation Facility.The primary X-ray techniques used at the beamline are high-energy X-ray di...The ultrahard X-ray multifunctional application beamline(BL12SW)is a phase-II beamline project at the Shanghai Syn-chrotron Radiation Facility.The primary X-ray techniques used at the beamline are high-energy X-ray diffraction and imaging using white and monochromatic light.The main scientific objectives of ultrahard X-ray beamlines are focused on two research areas.One is the study of the structural properties of Earth’s interior and new materials under extreme high-temperature and high-pressure conditions,and the other is the characterization of materials and processes in near-real service environments.The beamline utilizes a superconducting wiggler as the light source,with two diamond windows and SiC discs to filter out low-energy light(primarily below 30 keV)and a Cu filter assembly to control the thermal load entering the subsequent optical components.The beamline is equipped with dual monochromators.The first was a meridional bending Laue monochromator cooled by liquid nitrogen,achieving a full-energy coverage of 30-162 keV.The second was a sagittal bending Laue monochromator installed in an external building,providing a focused beam in the horizontal direction with an energy range of 60-120 keV.There were four experimental hutches:two large-volume press experimental hutches(LVP1 and LVP2)and two engineering material experimental hutches(ENG1 and ENG2).Each hutch was equipped with various near-real service conditions to satisfy different requirements.For example,LVP1 and LVP2 were equipped with a 200-ton DDIA press and a 2000-ton dual-mode(DDIA and Kawai)press,respectively.ENG1 and ENG2 provide in situ tensile,creep,and fatigue tests as well as high-temperature conditions.Since June 2023,the BL12SW has been in trial operation.It is expected to officially open to users by early 2024.展开更多
The hard X-ray nanoprobe beamline BL13U is a phase-Ⅱ beamline project at the Shanghai Synchrotron Radiation Facility.The beamline aims to enable comprehensive experiments at high spatial resolutions ranging from 50 t...The hard X-ray nanoprobe beamline BL13U is a phase-Ⅱ beamline project at the Shanghai Synchrotron Radiation Facility.The beamline aims to enable comprehensive experiments at high spatial resolutions ranging from 50 to 10 nm. The X-ray energy range of the beamline, 5–25 keV, can detect most elements in the periodic table. Two operating modes were designed to accommodate the experimental requirements of high-energy resolution or high photon flux, respectively. X-ray nanofluorescence, nanodiffraction, and coherent diffraction imaging are developed as the main experimental techniques for BL13U. This paper describes the beamline optics, end station configurations, experimental methods under development, and preliminary test results. This comprehensive overview aims to provide a clear understanding of the beamline capabilities and potential applications.展开更多
A new X-ray imaging and biomedical application beamline(BL13HB)has been implemented at the Shanghai Radiation Synchrotron Facility(SSRF)as an upgrade to the old X-ray imaging and biomedical application beamline(BL13W1...A new X-ray imaging and biomedical application beamline(BL13HB)has been implemented at the Shanghai Radiation Synchrotron Facility(SSRF)as an upgrade to the old X-ray imaging and biomedical application beamline(BL13W1).This is part of the Phase II construction project of the SSRF.The BL13HB is dedicated to 2D and 3D static and dynamic X-ray imaging,with a field of view of up to 48.5 mm×5.2 mm and spatial resolution as high as 0.8μm.A super-bending magnet is used as the X-ray source in BL13HB,which has a maximum magnetic field of 2.293 T.The energy range of monochromatic X-ray photons from a double-multiplayer monochromator was 8–40 keV,and the white beam mode was provided on the beamline for dynamic X-ray imaging and dynamic X-ray micro-CT.While maintaining the previous experimental setup of BL13W1,new equipment was added to the beamline experimental station.The beamline is equipped with different sets of X-ray imaging detectors for several experimental methods such as micro-CT,dynamic micro-CT,and pair distribution function.The experimental station of BL13HB is designed specifically for various in situ dynamic experiments,and BL13HB has been open to users since June 2021.展开更多
The round-beam operation presents many benefits for scientific experiments regarding synchrotron radiation and the weak-ening influences of intra-beam scattering in diffraction-limited synchrotron light sources.A roun...The round-beam operation presents many benefits for scientific experiments regarding synchrotron radiation and the weak-ening influences of intra-beam scattering in diffraction-limited synchrotron light sources.A round-beam generation method based on the global setting of skew quadrupoles and the application of a non-dominated sorting genetic algorithm was pro-posed in this study.Two schemes,including large-emittance coupling introduced via betatron coupling and vertical disper-sion,were explored in a candidate lattice for an upgrade-proposal of the Shanghai synchrotron radiation facility.Emittance variations with lattice imperfections and their influence on the beam dynamics of beam optic distortions were investigated.The results demonstrated that a precise coupling control ranging from 10 to 100%was achieved under low optical distortion,whereas full-coupling generation and its robustness were achieved by our proposed method by adjusting the skew quadrupole components located in the dispersion-free sections.The Touschek lifetime increased by a factor of 2–2.5.展开更多
Beamline BL17 U1 at Shanghai Synchrotron Radiation Facility is an energy-tunable macromolecular crystallography beamline that has been in user operation since 2009. Growing demand from the user community for a small b...Beamline BL17 U1 at Shanghai Synchrotron Radiation Facility is an energy-tunable macromolecular crystallography beamline that has been in user operation since 2009. Growing demand from the user community for a small beam and related experimental methods have motivated upgrades of the devices in the endstation.Minibeam modes have already been developed for operation. A self-integrated diffractometer reduces the sphere of confusion of the rotatory axis to 1μm. The new diffractometer is equipped with an upgraded on-axis viewing system that can improve the resolving power. Additionally,the area detector was also upgraded to the newest generation of detectors, the EIGER X 16 M, which can collect data at 133 Hz. After these upgrades, the endstation became virtually new. This paper covers the upgrade of the endstation devices and gives the first data collection results.展开更多
The Shanghai Synchrotron Radiation Facility (SSRF), a third generation light source, comprises a 3.5GeV electron storage ring, a full energy booster, a 150 MeV linac, and seven beamlines in Phase I of the project. Beg...The Shanghai Synchrotron Radiation Facility (SSRF), a third generation light source, comprises a 3.5GeV electron storage ring, a full energy booster, a 150 MeV linac, and seven beamlines in Phase I of the project. Beginning at the end of 2004 with a groundbreaking ceremony, the accelerators were installed in ten months from November 2006, and were successfully tested and commissioned in the past a couple of months. On December 21, 2007, storing electron beams in the storage ring was realized, and the first synchrotron radiations were observed three days later on the front-end of Beamline BL16B of the facility. Now, it runs 3 GeV 100 mA beams with a lifetime of 8~10 hours. Meanwhile, construction of the first seven beamlines (five ID beamlines and two bending magnet beamlines) is progressing on schedule.展开更多
In this paper,we report the development of a bunch-by-bunch beam current acquisition system.Through a waveform-reconstruction algorithm,the system realizes high equivalent sampling rate with a relatively low inherent ...In this paper,we report the development of a bunch-by-bunch beam current acquisition system.Through a waveform-reconstruction algorithm,the system realizes high equivalent sampling rate with a relatively low inherent rate.Based on the EPICS environment,information communication with other systems can be achieved.Preliminary test results in commissioning the SSRF storage ring show that the system can reconstruct the beam waveform of single bunch,providing a convenient and reliable method for the top-up operation in the future.展开更多
The BL19U2 at the Shanghai Synchrotron Radiation Facility is a small-angle X-ray scattering beamline dedicated to structural studies pertaining to biological macromolecules in solution.The beamline has been officially...The BL19U2 at the Shanghai Synchrotron Radiation Facility is a small-angle X-ray scattering beamline dedicated to structural studies pertaining to biological macromolecules in solution.The beamline has been officially opened to users in March 2015,and since then,a series of technological innovations has been developed to optimize beamline performance,thereby significantly improving the data collection efficiency and broadening the application scope of biological small-angle X-ray scattering.BL19U2 is ideal for the high-throughput screening of weakly scattered proteins,protein assemblies,nucleic acids,inorganic nanomaterials,and organic drug molecules.This paper describes the design and overview of the BL19U2 beamline.Versatile sample environments at the experimental station and some recent scientific highlights are presented.展开更多
The lattice of the Shanghai Synchrotron Radiation Facility(SSRF) storage ring was upgraded in the Phase-II beamline project, and thus far, 18 insertion devices(IDs) have been installed. The IDs cause closed-orbit dist...The lattice of the Shanghai Synchrotron Radiation Facility(SSRF) storage ring was upgraded in the Phase-II beamline project, and thus far, 18 insertion devices(IDs) have been installed. The IDs cause closed-orbit distortions, tune drift, and coupling distortions in the SSRF storage ring, all of which are significant issues that require solutions. In this study, an ID orbit feedforward compensation system based on a response matrix using corrector coils was developed, and it was applied to all commissioned IDs in the SSRF storage ring. After correction, the maximum ID-induced horizontal and vertical orbit distortions were less than 5.0 and 3.5 μm, respectively. Some interesting phenomena observed during the measurement process were explained. Additionally, optical and coupling feedforward systems were developed using quadrupole and skew quadrupole magnets installed on the front and back of elliptically polarizing undulators(EPUs). Moreover, over nearly four months of operation, the developed strategy delivered a satisfactory performance in the SSRF storage ring.展开更多
基金supported by the SSRF Phase-II projectNatural Science Foundation of Shanghai(Nos.21ZR1471800 and 23ZR1471200)National Natural Science Foundation of China(No.12005281)。
文摘BL10U2 is an undulator-based macromolecular crystallography(MX)beamline located at the 3.5-GeV Shanghai Synchrotron Radiation Facility.BL10U2 is specifically designed for conducting routine and biosafety level-2(BSL-2)MX experiments utilizing high-flux tunable X-rays with energies from 7 to 18 keV,providing a beam spot size of 20μm(horizontal)×10μm(vertical)at the sample point.Certification by the Shanghai Pudong Municipal Health Commission confirmed the capability to perform BSL-2 MX experiments.The beamline is currently equipped with an Eiger X 16 M detector and two newly developed in-house high-precision diffractometers that can be switched to perform conventional or in situ crystal diffraction experiments.An automatic sample changer developed in-house allows fast sample exchange in less than 30 s,supporting high-throughput MX experimentation and rapid crystal screening.Data collection from both the diffractometer and detector was controlled by an in-house developed data collection software(Finback)with a user-friendly interface for convenient operation.This study presents a comprehensive overview of the facilities,experimental methods,and performance characteristics of the BL10U2 beamline.
基金supported by the National Key Research and Development Program of China(No.2021YFC2301405)the National Natural Science Foundation of China(No.31971121)Shanghai Science and Technology Plan Project(No.21ZR14718)。
文摘Macromolecular crystallography beamline BL17U1 at the Shanghai Synchrotron Radiation Facility has been relocated,upgraded,and given a new ID(BL02U1).It now delivers X-rays in the energy range of 6–16 keV,with a focused beam of 11.6μm×4.8μm and photon flux greater than 1012 phs/s.The high credibility and stability of the beam and good timing synchronization of the equipment significantly improve the experimental efficiency.Since June 2021,when it officially opened to users,over 4200 h of beamtime have been provided to over 200 research groups to collect data at the beamline.Its good performance and stable operation have led to the resolution of several structures based on data collected at the beamline.
文摘The protein complex crystallographic beamline BL19U1 at the Shanghai Synchrotron Radiation Facility is one of the five beamlines dedicated to protein sciences operated by National Facility for Protein Science(Shanghai,China).The beamline,which features a small-gap invacuum undulator,has been officially open to users since March 2015.This beamline delivers X-ray in the energy range 7–15 keV.With its high flux,low divergence beam and a large active area detector,BL19U1 is designed for proteins with large molecular weight and large crystallographic unit cell dimensions.Good performance and stable operation of the beamline have allowed the number of Protein Data Bank(PDB)depositions and the number of articles published based on data collected at this beamline to increase steadily.To date,over 300 research groups have collected data at the beamline.More than 600 PDB entries have been deposited at the PDB(www.pdb.org).More than 300 papers have been published that include data collected at the beamline,including 21 research articles published in the top-level journals Cell,Nature,and Science.
基金supported by the National Development and Reform Commission(NDRC) of Chinathe National Natural Science Foundation of China(No.11505280)+1 种基金the Shanghai Youth Foundation(No.14YF1407500)the National Science Foundation of China(Nos.11475251,11225527)
文摘We report the design of a wide-range energy material beamline(E-line) with multiple experimental techniques at the Shanghai Synchrotron Radiation Facility.The undulators consisted of an elliptically polarizing undulator and in-vacuum undulator that generate the soft and hard X-rays, respectively. The beamline covered a wide energy range from 130 to 18 ke V with both a high photon flux([ 10^(12) phs/s with exit silt 30 lm in soft X-ray and [ 5 9 10^(12) phs/s in hard X-ray within 0.1%BW bandwidth) and promising resolving power(maximum E/DE [ 15,000 in soft X-ray with exit silt 30 lm and [6000 in hard X-ray). Moreover, the beam spots from the soft and hard X-rays were focused to the same sample position with a high overlap ratio, so that the surfaces, interfaces, and bulk properties were characterized in situ by changing the probing depth.
文摘Beam lifetime is dominated by Touschek scattering at the Shanghai Synchrotron Radiation Facility(SSRF).Touschek loss rate is affected by probability for scattering beyond the RF acceptance and the volume charge density of the bench.In the phaseⅡupgrade of the SSRF,a third harmonic superconducting cavity will be used to enhance the Touschek lifetime by lengthening the bunches.The Touschek lifetime improvement factor is affected by the voltage of a harmonic cavity.To stabilize the cavity voltage,a tuning control system was designed to control it.The design of the tuning control system was based on the SSRF third-generation low-level RF control system.Some hardware and specialized algorithms were redesigned to fit the harmonic cavity control.The design of the tuning control system is complete,and the control system has been tested.The test result shows that the fluctuation of amplitude is<±0.34%within 1.5 h,which satisfies the stability requirement.
基金supported by the National key research and development program of China(Nos.2016YFB0700401 and 2016YFB0700404)Natural Science Foundation of Shanghai(Nos.19ZR1468200 and 18ZR1448000)+2 种基金National Natural Science Foundation of China(Nos.51671154,51601213 and 51671122)Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA02004210)Youth Innovation Promotion Association,Chinese Academy of Science(No.2019264)
文摘From a safety point of view, it is important to study the damages and reliability of molten salt reactor structural alloy materials, which are subjected to extreme environments due to neutron irradiation, molten salt corrosion, fission product attacks, thermal stress, and even combinations of these. In the past few years, synchrotron radiation-based materials characterization techniques have proven to be effective in revealing the microstructural evolution and failure mechanisms of the alloys under surrogating operation conditions. Here, we review the recent progress in the investigations of molten salt corrosion,tellurium(Te) corrosion, and alloy design. The valence states and distribution of chromium(Cr) atoms, and the diffusion and local atomic structure of Te atoms near the surface of corroded alloys have been investigated using synchrotron radiation techniques, which considerably deepen the understandings on the molten salt and Te corrosion behaviors. Furthermore, the structure and size distribution of the second phases in the alloys have been obtained, which are helpful for the future development of new alloy materials.
文摘The Shanghai Laser Electron Gamma Source(SLEGS, located in BL03SSID) beamline at the Shanghai Synchrotron Radiation Facility(SSRF) is a Laser Compton Scattering(LCS) gamma source used for the investigation of nuclear structure, which is in extensive demand in fields such as nuclear astrophysics, nuclear cluster structure, polarization physics, and nuclear energy. The beamline is based on the inverse Compton scattering of 10640 nm photons on 3.5 GeV electrons and a gamma source with variable energy by changing the scattering angle from 20° to 160°. γ rays of 0.25-21.1 MeV can be extracted by the scheme consisting of the interaction chamber, coarse collimator, fine collimator, and attenuator. The maximum photon flux for 180° is approximately 10~7 photons/s at the target at 21.7 MeV, with a 3-mm-diameter beam. The beamline was equipped with four types of spectrometers for experiments in( γ,γ'),( γ,n),( γ,p), and( γ,α). At present, Nuclear Resonance Fluorescence(NRF) spectrometry, Flat-Efficiency neutron Detector(FED) spectrometry, neutron Time-Of-Flight(TOF) spectrometry, and Light-Charged Particle(LCP) spectrometry methods have been developed.
基金National Natural Science Foundation of China(Nos.12334010,42274121).
文摘The ultrahard X-ray multifunctional application beamline(BL12SW)is a phase-II beamline project at the Shanghai Syn-chrotron Radiation Facility.The primary X-ray techniques used at the beamline are high-energy X-ray diffraction and imaging using white and monochromatic light.The main scientific objectives of ultrahard X-ray beamlines are focused on two research areas.One is the study of the structural properties of Earth’s interior and new materials under extreme high-temperature and high-pressure conditions,and the other is the characterization of materials and processes in near-real service environments.The beamline utilizes a superconducting wiggler as the light source,with two diamond windows and SiC discs to filter out low-energy light(primarily below 30 keV)and a Cu filter assembly to control the thermal load entering the subsequent optical components.The beamline is equipped with dual monochromators.The first was a meridional bending Laue monochromator cooled by liquid nitrogen,achieving a full-energy coverage of 30-162 keV.The second was a sagittal bending Laue monochromator installed in an external building,providing a focused beam in the horizontal direction with an energy range of 60-120 keV.There were four experimental hutches:two large-volume press experimental hutches(LVP1 and LVP2)and two engineering material experimental hutches(ENG1 and ENG2).Each hutch was equipped with various near-real service conditions to satisfy different requirements.For example,LVP1 and LVP2 were equipped with a 200-ton DDIA press and a 2000-ton dual-mode(DDIA and Kawai)press,respectively.ENG1 and ENG2 provide in situ tensile,creep,and fatigue tests as well as high-temperature conditions.Since June 2023,the BL12SW has been in trial operation.It is expected to officially open to users by early 2024.
基金National Key Research and Development Program(No.2021YFA1601000)National Natural Science Foundation of China(No.12175294)Natural Science Foundation of Shanghai,China(No.21ZR1471500).
文摘The hard X-ray nanoprobe beamline BL13U is a phase-Ⅱ beamline project at the Shanghai Synchrotron Radiation Facility.The beamline aims to enable comprehensive experiments at high spatial resolutions ranging from 50 to 10 nm. The X-ray energy range of the beamline, 5–25 keV, can detect most elements in the periodic table. Two operating modes were designed to accommodate the experimental requirements of high-energy resolution or high photon flux, respectively. X-ray nanofluorescence, nanodiffraction, and coherent diffraction imaging are developed as the main experimental techniques for BL13U. This paper describes the beamline optics, end station configurations, experimental methods under development, and preliminary test results. This comprehensive overview aims to provide a clear understanding of the beamline capabilities and potential applications.
基金supported by the National Major Scientific Instruments and Equipment Development Project of China(No.11627901)the National Key Research and Development Program of China(Nos.2021YFF0701202 and 2021YFA1600703)the National Natural Science Foundation of China(Nos.U1932205,12275343)。
文摘A new X-ray imaging and biomedical application beamline(BL13HB)has been implemented at the Shanghai Radiation Synchrotron Facility(SSRF)as an upgrade to the old X-ray imaging and biomedical application beamline(BL13W1).This is part of the Phase II construction project of the SSRF.The BL13HB is dedicated to 2D and 3D static and dynamic X-ray imaging,with a field of view of up to 48.5 mm×5.2 mm and spatial resolution as high as 0.8μm.A super-bending magnet is used as the X-ray source in BL13HB,which has a maximum magnetic field of 2.293 T.The energy range of monochromatic X-ray photons from a double-multiplayer monochromator was 8–40 keV,and the white beam mode was provided on the beamline for dynamic X-ray imaging and dynamic X-ray micro-CT.While maintaining the previous experimental setup of BL13W1,new equipment was added to the beamline experimental station.The beamline is equipped with different sets of X-ray imaging detectors for several experimental methods such as micro-CT,dynamic micro-CT,and pair distribution function.The experimental station of BL13HB is designed specifically for various in situ dynamic experiments,and BL13HB has been open to users since June 2021.
文摘The round-beam operation presents many benefits for scientific experiments regarding synchrotron radiation and the weak-ening influences of intra-beam scattering in diffraction-limited synchrotron light sources.A round-beam generation method based on the global setting of skew quadrupoles and the application of a non-dominated sorting genetic algorithm was pro-posed in this study.Two schemes,including large-emittance coupling introduced via betatron coupling and vertical disper-sion,were explored in a candidate lattice for an upgrade-proposal of the Shanghai synchrotron radiation facility.Emittance variations with lattice imperfections and their influence on the beam dynamics of beam optic distortions were investigated.The results demonstrated that a precise coupling control ranging from 10 to 100%was achieved under low optical distortion,whereas full-coupling generation and its robustness were achieved by our proposed method by adjusting the skew quadrupole components located in the dispersion-free sections.The Touschek lifetime increased by a factor of 2–2.5.
基金supported by the Maintenance and Renovation Project for the major infrastructure of the Chinese Academy of Sciencesthe Operation Project of SSRF
文摘Beamline BL17 U1 at Shanghai Synchrotron Radiation Facility is an energy-tunable macromolecular crystallography beamline that has been in user operation since 2009. Growing demand from the user community for a small beam and related experimental methods have motivated upgrades of the devices in the endstation.Minibeam modes have already been developed for operation. A self-integrated diffractometer reduces the sphere of confusion of the rotatory axis to 1μm. The new diffractometer is equipped with an upgraded on-axis viewing system that can improve the resolving power. Additionally,the area detector was also upgraded to the newest generation of detectors, the EIGER X 16 M, which can collect data at 133 Hz. After these upgrades, the endstation became virtually new. This paper covers the upgrade of the endstation devices and gives the first data collection results.
文摘The Shanghai Synchrotron Radiation Facility (SSRF), a third generation light source, comprises a 3.5GeV electron storage ring, a full energy booster, a 150 MeV linac, and seven beamlines in Phase I of the project. Beginning at the end of 2004 with a groundbreaking ceremony, the accelerators were installed in ten months from November 2006, and were successfully tested and commissioned in the past a couple of months. On December 21, 2007, storing electron beams in the storage ring was realized, and the first synchrotron radiations were observed three days later on the front-end of Beamline BL16B of the facility. Now, it runs 3 GeV 100 mA beams with a lifetime of 8~10 hours. Meanwhile, construction of the first seven beamlines (five ID beamlines and two bending magnet beamlines) is progressing on schedule.
基金Supported by 100 Talents Programme of The Chinese Academy of Sciences
文摘In this paper,we report the development of a bunch-by-bunch beam current acquisition system.Through a waveform-reconstruction algorithm,the system realizes high equivalent sampling rate with a relatively low inherent rate.Based on the EPICS environment,information communication with other systems can be achieved.Preliminary test results in commissioning the SSRF storage ring show that the system can reconstruct the beam waveform of single bunch,providing a convenient and reliable method for the top-up operation in the future.
基金the National Natural Science Foundation of China(Nos.U1832215 and U1832144)the Youth Innovation Promotion Association of Chinese Academy Science(No.2017319).
文摘The BL19U2 at the Shanghai Synchrotron Radiation Facility is a small-angle X-ray scattering beamline dedicated to structural studies pertaining to biological macromolecules in solution.The beamline has been officially opened to users in March 2015,and since then,a series of technological innovations has been developed to optimize beamline performance,thereby significantly improving the data collection efficiency and broadening the application scope of biological small-angle X-ray scattering.BL19U2 is ideal for the high-throughput screening of weakly scattered proteins,protein assemblies,nucleic acids,inorganic nanomaterials,and organic drug molecules.This paper describes the design and overview of the BL19U2 beamline.Versatile sample environments at the experimental station and some recent scientific highlights are presented.
基金supported by the Key Program of Shanghai Science and Technology Innovation Center(No.1174000565)。
文摘The lattice of the Shanghai Synchrotron Radiation Facility(SSRF) storage ring was upgraded in the Phase-II beamline project, and thus far, 18 insertion devices(IDs) have been installed. The IDs cause closed-orbit distortions, tune drift, and coupling distortions in the SSRF storage ring, all of which are significant issues that require solutions. In this study, an ID orbit feedforward compensation system based on a response matrix using corrector coils was developed, and it was applied to all commissioned IDs in the SSRF storage ring. After correction, the maximum ID-induced horizontal and vertical orbit distortions were less than 5.0 and 3.5 μm, respectively. Some interesting phenomena observed during the measurement process were explained. Additionally, optical and coupling feedforward systems were developed using quadrupole and skew quadrupole magnets installed on the front and back of elliptically polarizing undulators(EPUs). Moreover, over nearly four months of operation, the developed strategy delivered a satisfactory performance in the SSRF storage ring.