The mechanism for the effects of pressure on the magnetic properties and the martensitic transformation of Ni-Mn- Sn shape memory alloys is revealed by first-principles calculations. It is found that the total energy ...The mechanism for the effects of pressure on the magnetic properties and the martensitic transformation of Ni-Mn- Sn shape memory alloys is revealed by first-principles calculations. It is found that the total energy difference between paramagnetic and ferromagnetic austenite states plays an important role in the magnetic transition of Ni-Mn-Sn under pressure. The pressure increases the relative stability of the martensite with respect to the anstenite, leading to an increase of the martensitic transformation temperature. Moreover, the effects of pressure on the magnetic properties and the martensitic transformation are discussed based on the electronic structure.展开更多
The effect of Fe on the martensitic transformation of TaRu high-temperature shape memory alloys has been investigated using first-principles calculations.The site preference of Fe in TaRu alloys has been clarified for...The effect of Fe on the martensitic transformation of TaRu high-temperature shape memory alloys has been investigated using first-principles calculations.The site preference of Fe in TaRu alloys has been clarified for the first time,and the results show that Fe is predicted to occupy Ru sites.The addition of Fe increases the stability of the Ta 50 Ru 50 x Fe x β phase,leading to a significant decrease in the β to β ' martensitic transformation temperature.In addition,the mechanism of the Fe alloying effect is explained on the basis of the electronic structure.展开更多
The effect of ternary alloying element Al and quaternary alloying element Co on the martensitic transformation of ZrCu-based shape memory alloy was investigated. The results show that the addition of Al and Co in ZrCu...The effect of ternary alloying element Al and quaternary alloying element Co on the martensitic transformation of ZrCu-based shape memory alloy was investigated. The results show that the addition of Al and Co in ZrCu alloy decreases both the martensitic transformation temperature and the martensitic transformation temperature hysteresis. Transmission electron microscope (TEM) observations reveal that theCm martensite structure is the preferential formation phase. The intervariant structures in ZrCuAlCo alloy are (021) type I twins, while the dominant substructures inside the martensite variant are the (001) compound twins. With the increase of Co content, tensile fracture strength and strain are improved obviously.展开更多
The effect of Nb content on the martensitic transformation of NbRu high-temperature shape memory alloys is investigated by experiments and first-principles calculations. We calculate the lattice parameters, density of...The effect of Nb content on the martensitic transformation of NbRu high-temperature shape memory alloys is investigated by experiments and first-principles calculations. We calculate the lattice parameters, density of states, charge density, and heats of formation of Nb50+xRu50-x βphase. The results show that an increase in Nb content increases the stability of Nbso+xRu50-x β phase, leading to a significant decrease of the β to β ′martensitic transformation temperature. In addition, the mechanism of the effects of Nb content on phase stability and martensitic transformation temperature is studied on the basis of electronic structure.展开更多
The effect of deformation via stress-induced martensitic transformation on the reverse transformation behavior of the (Ni47Ti44)100?xNbx (x=3, 9, 15, 20, 30, mole fraction, %) shape memory alloys was investigated in d...The effect of deformation via stress-induced martensitic transformation on the reverse transformation behavior of the (Ni47Ti44)100?xNbx (x=3, 9, 15, 20, 30, mole fraction, %) shape memory alloys was investigated in detail by differential scanning calorimetry (DSC) after performing cryogenic tensile tests at a temperature of Ms+30 ℃. The results show that Nb-content has obvious effect on the process of stress-induced martensitic transformation. It is also observed that the stress-induced martensite is stabilized relative to the thermally-induced martensite (TIM) formed on cooling, and Nb-content in Ni-Ti-Nb alloy has great influence on the reverse transformation start temperature and transformation temperature hysteresis of stress-induced martensite(SIM). The mechanism of wide transformation temperature hysteresis was fully explained based on the microscopic structure and the distribution of the elastic strain energy of (Ni47Ti44)100?xNbx alloys.展开更多
This paper studies the martensitic transformation in the Cu-doped NiMnGa alloys. The orthorhombic martensite transforms to L21 cubic austenite by Cu substituting for Ni in the Nis0-xCuxMn31Ga19 (x=2 10) alloys, the ...This paper studies the martensitic transformation in the Cu-doped NiMnGa alloys. The orthorhombic martensite transforms to L21 cubic austenite by Cu substituting for Ni in the Nis0-xCuxMn31Ga19 (x=2 10) alloys, the martensitic transformation temperature decreases significantly with the rate of 40 K per Cu atom addition. The variation of the Fermi sphere radius (kF) is applied to evaluate the change of the martensitic transformation temperature. The increase of kF leads to the increase of the martensitic transformation temperature.展开更多
The critical driving force for martensitic transformation fcc ( gamma ) yields hcp ( epsilon ) in ternary Fe-Mn-Si alloys increases with the content of Mn and decreases with that of Si. Thermodynamical prediction of ...The critical driving force for martensitic transformation fcc ( gamma ) yields hcp ( epsilon ) in ternary Fe-Mn-Si alloys increases with the content of Mn and decreases with that of Si. Thermodynamical prediction of M//s in ternary Fe-Mn-Si alloys was established. The fcc ( gamma ) yields hcp ( epsilon ) martensitic transformation in Fe-Mn-Si is a semi-thermoelastic and the nucleation process does not strongly depend on soft mode. Nucleation occurs directly through an overlapping of stacking fault rather than pole mechanism, and it is suggested that stacking fault energy (SFE) is the main factor controlling nucleation. Based on the phenomenological theory of martensite crystallography, a shuffle on (0001)//h//c//p plane is required when d//1//1//1 does not equal d//0//0//0//2. The derived principal strain in Bain distortion is smaller, i, e., more reasonable than the values given by Christian. Alloying elements strengthening the austenite, lowering SFE of gamma phase and reducing T//N** gamma temperature may be beneficial to shape memory effect of Fe-Mn-Si based alloys. Accordingly, Fe-Mn-Si-RE and Fe-Mn-Si-Cr-N (or Fe-Mn-Si-Ni-Cr-N) are worthy to be recommended as shape memory materials with improved shape memory effect. (Edited author abstract) 48 Refs.展开更多
In this paper, a TiNi shape memory alloy fiber Ni matrix composite was fabricated by an electroplating method using TiNi alloy as the cathode and Ni as the anode. The constrained martensitic transformation behaviors o...In this paper, a TiNi shape memory alloy fiber Ni matrix composite was fabricated by an electroplating method using TiNi alloy as the cathode and Ni as the anode. The constrained martensitic transformation behaviors of the TiNi alloy were studied by differential scanning calorimeter (DSC), and the results showed that two endothermic peaks appear on the DSC heating curves and the reverse transformation temperatures increase with increasing prestrain levels. Moreover, comparing to the free transformation, the temperature window of the constrained reverse transformation is widely expanded due to the influence of recovery stress.展开更多
The martensitic transformation for Co50Ni20Ga30 ribbon synthesized by the melt-spinning technique was studied by means of X-ray diffraction and ac magnetic susceptibility. The Co50Ni20Ga30 ribbon, having bcc phase wit...The martensitic transformation for Co50Ni20Ga30 ribbon synthesized by the melt-spinning technique was studied by means of X-ray diffraction and ac magnetic susceptibility. The Co50Ni20Ga30 ribbon, having bcc phase with calculated lattice parameters of a=0.57431 nm at 313 K. It exhibits a structure transition from parent phase to martensite during cooling. The martensitic phase in Co50Ni20Ga30 ribbon is tetragonal structure with lattice parameters of a=b=0.5422 nm and c=0.6401 nm. (c/a>1). According to the changing of diffraction intensity for martensite and the change of ac magnetic susceptibility, the process of the martensitic transformation can be divided into three parts during cooling from 283 K to 213 K. When the temperature decreasing sequentially from 193 K to 110 K, the structure of the martensite has a change in which the a-axis decreases and c-axis increases. The morphologies of selfaccommodation were observeds. The parallelogram morphology, the diamond morphology and the fork morphology were found.展开更多
DSC was used to study the effects of predeformation on the reverse martensitic transformation of near-equiatomic TiNi alloy. Both the start temperature As and the finish temperature Af of the reverse transformation in...DSC was used to study the effects of predeformation on the reverse martensitic transformation of near-equiatomic TiNi alloy. Both the start temperature As and the finish temperature Af of the reverse transformation increased with increasing degree of predeformation, but the algebraic difference between As and Af decreased with increasing predeformation until it reached a minimum value, then remained unchanged with further deformation. Transformation heat also increased with increasing predeformation until it reached a maximum value, then decreased with further predeformation. All the phenomena above were considered to be closely related with the release of elastic strain energy during predeformation.展开更多
The effect of austenite aging at 823 K on the microstructures and martensitic transformation behavior of Co 46 Ni 27 Ga 27 alloy has been investigated using optical microscopy (OM), transmission electron microscopy ...The effect of austenite aging at 823 K on the microstructures and martensitic transformation behavior of Co 46 Ni 27 Ga 27 alloy has been investigated using optical microscopy (OM), transmission electron microscopy (TEM), X-ray diffraction analysis (XRD), and differential scanning calorimeter (DSC). The microstructure observation results show that the unaged Co 46 Ni 27 Ga 27 alloy is composed of the tetragonal nonmodulated martensite phase and face-centered cubic γ phase. It is found that a new nanosized fcc phase precipitates in the process of austenite aging, leading to the formation of metastable age-affected martensite around the precipitates with composition inhomogeneity. Two-stage reverse martensitic transformation occurs in the samples aged for 2 and 24 h due to the composition difference between the age-affected martensite and the original martensite. For the Co 46 Ni 27 Ga 27 alloy aged for 120 h, no reverse transformation can be detected due to the disappearance of the metastable age-affected martensite and the small latent heat of the original martensite. The martensitic transformation temperatures of the Co 46 Ni 27 Ga 27 alloy decrease with an increase in aging time.展开更多
Martensitic stabilization caused by deformation in a TiNi shape memory alloy was studied.Special attention was paid to the deformed microstructures to identify the cause of martensitic stabilization.Martensitic stabil...Martensitic stabilization caused by deformation in a TiNi shape memory alloy was studied.Special attention was paid to the deformed microstructures to identify the cause of martensitic stabilization.Martensitic stabilization was demonstrated by differential scanning calorimetry for the tensioned TiNi shape memory alloy.Transmission electron microscopy revealed that antiphase boundaries were formed because of the fourfold dissociation of [110]B19' super lattice dislocations and were preserved after reverse transformation due to the lattice correspondence.Martensitic stabilization was attributed to dislocations induced by deformation,which reduced the ordering degree of the microstructure,spoiled the reverse path from martensite to parent phase compared with thermoelastic transformation,and imposed resistance on phase transformation through the stress field.展开更多
By consideration of the characteristics of martensitic transformation and the derivation from the application of the group theory to martensitic transformation, it may be concluded that the shape memory effect (SME) c...By consideration of the characteristics of martensitic transformation and the derivation from the application of the group theory to martensitic transformation, it may be concluded that the shape memory effect (SME) can be attained in materials through a martensitic transformation and its reverse transformation. only when there forms single or nearly single variant of martensite, with an absence of the factors causing the generation of the resistance against SME. on this principle, various shape memory materials including nonferrous alloys. iron-based alloys and ceramics containjng zirconia are expected to be further developed. A criterion for thermoelastic martensitic transformation is presented, Factors which may act as the resistance against SME in various materials are briefly described展开更多
Shape memory alloys(SMAs)have been explored as smart materials and used as dampers,actuator elements,and smart sensors.An important character of SMAs is its ability to recover all of its large deformations in mechan...Shape memory alloys(SMAs)have been explored as smart materials and used as dampers,actuator elements,and smart sensors.An important character of SMAs is its ability to recover all of its large deformations in mechanical loading-unloading cycles without showing permanent deformation.This paper presents a stress-induced phenomenological constitutive equation for SMAs,which can be used to describe the superelastic hysteresis loops and phase transformation between Martensite and Austenite.The Martensite fraction of SMAs is assumed to be dependent on deviatoric stress tensor.Therefore,phase transformation of SMAs is volume preserving during the phase transformation.The model is implemented in large deformation finite element code and cast in the updated Lagrangian scheme.In order to use the Cauchy stress and the linear strain in constitutive laws,a frame indifferent stress objective rate has to be used.In this paper,the Jaumann stress rate is used.Results of the numerical experiments conducted in this study show that the superelastic hysteresis loops arising with the phase transformation can be effectively captured.展开更多
The use of Ni-rich TiNiHf alloys as high temperature shape memory alloys (SMAs) through aging has been presented. For Ni-rich Ti80-xNixHf20 alloys, their phase transformation temperatures are averagely increased mor...The use of Ni-rich TiNiHf alloys as high temperature shape memory alloys (SMAs) through aging has been presented. For Ni-rich Ti80-xNixHf20 alloys, their phase transformation temperatures are averagely increased more than 100 K by aging at 823 K for 2 h. Especially for the alloys with Ni-content of 50.4 at. pct and 50.6 at. pct, their martensitic transformation start temperatures (Ms) are more than 473 K after aging. TEM observation confirmed that some fine particles precipitate from the matrix during aging. The aged Ni-rich TiNiHf SMAs show the better thermal stability of phase transformation temperatures than the solutiontreated TiNiHf alloys. The fine particles precipitated during aging should be responsible for the increase of phase transformation temperatures and its high stability.展开更多
The hyperfine interactions of two shape memory alloys have been studied by Mossbauer effect measurement at various temperatures. The Mossbauer spectra exhibit a mag-netic change from antiferro magnetic state to parama...The hyperfine interactions of two shape memory alloys have been studied by Mossbauer effect measurement at various temperatures. The Mossbauer spectra exhibit a mag-netic change from antiferro magnetic state to paramagnetic state when the temperuture rises. The Fe-Mn-Si alloys have a small hyperfine field and silicon element increases the hyperfine field and magnetic susceptibility. Thermo-induced γ→ ε trunsforma-tions are suppressed by Neel transition and by increasing carbon content, whereas stress induced γ→ ε transformation occurs in both alloys. Antiferromagnetic spin order can suppress thermo-induced γ→εtransformations efficiently, but cannot sup-press stress induced γ → ε transformation.展开更多
Plastic deformation of three CuZnAl shape memory alloys in martensitic state was investi- gated by means of optical and electron metallography,dilatometry and electric resistiviy de- termination.Two of the alloys are ...Plastic deformation of three CuZnAl shape memory alloys in martensitic state was investi- gated by means of optical and electron metallography,dilatometry and electric resistiviy de- termination.Two of the alloys are in martensitic state at ambient temperature,and the A_f temperature of the third one is far below the ambient temperature.The effect of deformation of alloys in martensitic state on the course and temperature of transformation as well as the hysteresis of transformation cycles has been analyzed and the “effect of the first cycle” has also been discussed.展开更多
The reversible transformation between matrix and martensite in Ni-Ti shape memory alloys has been dynamically observed under TEM.The orientation relation between martensite and austenite as well as the structural chan...The reversible transformation between matrix and martensite in Ni-Ti shape memory alloys has been dynamically observed under TEM.The orientation relation between martensite and austenite as well as the structural change near the transition temperature has been also studied with the help of HREM SADP.The results show that the orientation relation between martensite and austenite is[11]_A//[10]_M,[110]_A//[001]_M,(110)_A//(001)_M and the angle between(110)_A and(010)_M is about 6.5°.The crystal defects of martensite are found to be twin and stacking fault,and the twin plane as(100).展开更多
Measurements of electrical resistivity, X-ray diffraction, and tensile test at room temperature and ?196°C were performed to investigate the effects of Al addition substituting Ni on the phase transformation beh...Measurements of electrical resistivity, X-ray diffraction, and tensile test at room temperature and ?196°C were performed to investigate the effects of Al addition substituting Ni on the phase transformation behaviors, the mechanical properties, and the shape memory effects of Ti50Ni47Fe2Al1 and Ti50Ni46.5Fe2.5Al1 alloys. It is found that 1at% Al addition dramatically decreases the martensitic start transformation temperature and expands the transformation temperature range of R-phase for TiNiFeAl alloys. The results of tensile test indicate that 1at% Al improves the yield strength of Ti50Ni47Fe2Al1 and Ti50Ni46.5Fe2.5Al1 alloys by 40% and 64%, but de- creases the plasticity to 11% and 12% from 26% and 27% respectively. Moreover, excellent shape memory effect of 6.6% and 7.5% were found in Ti50Ni47Fe2Al1 and Ti50Ni46.5Fe2.5Al1 alloys, which results from the stress-induced martensite transformation from the R-phase.展开更多
The reverse martensitic transformation of TiNi alloy wires prestrained in the parent phase was studied. Experimental results shou, that the reverse transformation of the TiNi allogys prestrained in the parent phase is...The reverse martensitic transformation of TiNi alloy wires prestrained in the parent phase was studied. Experimental results shou, that the reverse transformation of the TiNi allogys prestrained in the parent phase is significantly different from that of the TiNi alloys prestrained in the martensite phase. Three continual peaks appear on the DSC curves of wires with a small prestrain and one high temperature peak appears on the DSC curves of wires with a large prestrain.展开更多
基金Project supported by the New Century Excellent Talents in Heilongjiang Provincial University,China(Grant No.1253-NCET-009)the Youth Academic Backbone in Heilongjiang Provincial University,China(Grant No.1251G022)the National Natural Science Foundation of China(Grant Nos.50901026 and 51301054)
文摘The mechanism for the effects of pressure on the magnetic properties and the martensitic transformation of Ni-Mn- Sn shape memory alloys is revealed by first-principles calculations. It is found that the total energy difference between paramagnetic and ferromagnetic austenite states plays an important role in the magnetic transition of Ni-Mn-Sn under pressure. The pressure increases the relative stability of the martensite with respect to the anstenite, leading to an increase of the martensitic transformation temperature. Moreover, the effects of pressure on the magnetic properties and the martensitic transformation are discussed based on the electronic structure.
基金Project supported by the National Natural Science Foundation of China (Grant No. 50901026)the China Postdoctoral Science Foundation (Grant Nos. 20100471084 and 201104418)
文摘The effect of Fe on the martensitic transformation of TaRu high-temperature shape memory alloys has been investigated using first-principles calculations.The site preference of Fe in TaRu alloys has been clarified for the first time,and the results show that Fe is predicted to occupy Ru sites.The addition of Fe increases the stability of the Ta 50 Ru 50 x Fe x β phase,leading to a significant decrease in the β to β ' martensitic transformation temperature.In addition,the mechanism of the Fe alloying effect is explained on the basis of the electronic structure.
基金Projects(51171052,51171052,51322102)supported by the National Natural Science Foundation of ChinaProjects(2011CB012904,2012CB619400)supported by the National Basic Research Program of China+1 种基金Project(20112302130006)supported by Doctoral Program Foundation of Institutions of Higher Education of ChinaProject(HIT.BRET Ⅲ 201201)supported by the Fundamental Research Funds for the Central Universities,China
文摘The effect of ternary alloying element Al and quaternary alloying element Co on the martensitic transformation of ZrCu-based shape memory alloy was investigated. The results show that the addition of Al and Co in ZrCu alloy decreases both the martensitic transformation temperature and the martensitic transformation temperature hysteresis. Transmission electron microscope (TEM) observations reveal that theCm martensite structure is the preferential formation phase. The intervariant structures in ZrCuAlCo alloy are (021) type I twins, while the dominant substructures inside the martensite variant are the (001) compound twins. With the increase of Co content, tensile fracture strength and strain are improved obviously.
基金Project supported by the Youth Top-notch Innovative Talents Program of Harbin University of Science and Technology
文摘The effect of Nb content on the martensitic transformation of NbRu high-temperature shape memory alloys is investigated by experiments and first-principles calculations. We calculate the lattice parameters, density of states, charge density, and heats of formation of Nb50+xRu50-x βphase. The results show that an increase in Nb content increases the stability of Nbso+xRu50-x β phase, leading to a significant decrease of the β to β ′martensitic transformation temperature. In addition, the mechanism of the effects of Nb content on phase stability and martensitic transformation temperature is studied on the basis of electronic structure.
文摘The effect of deformation via stress-induced martensitic transformation on the reverse transformation behavior of the (Ni47Ti44)100?xNbx (x=3, 9, 15, 20, 30, mole fraction, %) shape memory alloys was investigated in detail by differential scanning calorimetry (DSC) after performing cryogenic tensile tests at a temperature of Ms+30 ℃. The results show that Nb-content has obvious effect on the process of stress-induced martensitic transformation. It is also observed that the stress-induced martensite is stabilized relative to the thermally-induced martensite (TIM) formed on cooling, and Nb-content in Ni-Ti-Nb alloy has great influence on the reverse transformation start temperature and transformation temperature hysteresis of stress-induced martensite(SIM). The mechanism of wide transformation temperature hysteresis was fully explained based on the microscopic structure and the distribution of the elastic strain energy of (Ni47Ti44)100?xNbx alloys.
基金supported by the National Natural Science Foundation for Distinguished Young Scholars of China (Grant No. 50925101)Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 50921003)the Fundamental Research Funds for the Central Universities
文摘This paper studies the martensitic transformation in the Cu-doped NiMnGa alloys. The orthorhombic martensite transforms to L21 cubic austenite by Cu substituting for Ni in the Nis0-xCuxMn31Ga19 (x=2 10) alloys, the martensitic transformation temperature decreases significantly with the rate of 40 K per Cu atom addition. The variation of the Fermi sphere radius (kF) is applied to evaluate the change of the martensitic transformation temperature. The increase of kF leads to the increase of the martensitic transformation temperature.
文摘The critical driving force for martensitic transformation fcc ( gamma ) yields hcp ( epsilon ) in ternary Fe-Mn-Si alloys increases with the content of Mn and decreases with that of Si. Thermodynamical prediction of M//s in ternary Fe-Mn-Si alloys was established. The fcc ( gamma ) yields hcp ( epsilon ) martensitic transformation in Fe-Mn-Si is a semi-thermoelastic and the nucleation process does not strongly depend on soft mode. Nucleation occurs directly through an overlapping of stacking fault rather than pole mechanism, and it is suggested that stacking fault energy (SFE) is the main factor controlling nucleation. Based on the phenomenological theory of martensite crystallography, a shuffle on (0001)//h//c//p plane is required when d//1//1//1 does not equal d//0//0//0//2. The derived principal strain in Bain distortion is smaller, i, e., more reasonable than the values given by Christian. Alloying elements strengthening the austenite, lowering SFE of gamma phase and reducing T//N** gamma temperature may be beneficial to shape memory effect of Fe-Mn-Si based alloys. Accordingly, Fe-Mn-Si-RE and Fe-Mn-Si-Cr-N (or Fe-Mn-Si-Ni-Cr-N) are worthy to be recommended as shape memory materials with improved shape memory effect. (Edited author abstract) 48 Refs.
基金supported by the National Natural Science Foundation of China,No.50071037the China Postdoctoral Science Foundation
文摘In this paper, a TiNi shape memory alloy fiber Ni matrix composite was fabricated by an electroplating method using TiNi alloy as the cathode and Ni as the anode. The constrained martensitic transformation behaviors of the TiNi alloy were studied by differential scanning calorimeter (DSC), and the results showed that two endothermic peaks appear on the DSC heating curves and the reverse transformation temperatures increase with increasing prestrain levels. Moreover, comparing to the free transformation, the temperature window of the constrained reverse transformation is widely expanded due to the influence of recovery stress.
基金This study was supported by the National Natural Science Foundation of China grant No.50271023 the Natural Science Foundation of Hebei Province(No.503031).
文摘The martensitic transformation for Co50Ni20Ga30 ribbon synthesized by the melt-spinning technique was studied by means of X-ray diffraction and ac magnetic susceptibility. The Co50Ni20Ga30 ribbon, having bcc phase with calculated lattice parameters of a=0.57431 nm at 313 K. It exhibits a structure transition from parent phase to martensite during cooling. The martensitic phase in Co50Ni20Ga30 ribbon is tetragonal structure with lattice parameters of a=b=0.5422 nm and c=0.6401 nm. (c/a>1). According to the changing of diffraction intensity for martensite and the change of ac magnetic susceptibility, the process of the martensitic transformation can be divided into three parts during cooling from 283 K to 213 K. When the temperature decreasing sequentially from 193 K to 110 K, the structure of the martensite has a change in which the a-axis decreases and c-axis increases. The morphologies of selfaccommodation were observeds. The parallelogram morphology, the diamond morphology and the fork morphology were found.
基金the National Natural Science Foundation of China under grant No. 59601004,59731030.
文摘DSC was used to study the effects of predeformation on the reverse martensitic transformation of near-equiatomic TiNi alloy. Both the start temperature As and the finish temperature Af of the reverse transformation increased with increasing degree of predeformation, but the algebraic difference between As and Af decreased with increasing predeformation until it reached a minimum value, then remained unchanged with further deformation. Transformation heat also increased with increasing predeformation until it reached a maximum value, then decreased with further predeformation. All the phenomena above were considered to be closely related with the release of elastic strain energy during predeformation.
基金supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (No. 50921003)the National Natural Science Foundation of China (No. 51101057)the Fundamental Research Funds for the Central Universities (No. 09QG41)
文摘The effect of austenite aging at 823 K on the microstructures and martensitic transformation behavior of Co 46 Ni 27 Ga 27 alloy has been investigated using optical microscopy (OM), transmission electron microscopy (TEM), X-ray diffraction analysis (XRD), and differential scanning calorimeter (DSC). The microstructure observation results show that the unaged Co 46 Ni 27 Ga 27 alloy is composed of the tetragonal nonmodulated martensite phase and face-centered cubic γ phase. It is found that a new nanosized fcc phase precipitates in the process of austenite aging, leading to the formation of metastable age-affected martensite around the precipitates with composition inhomogeneity. Two-stage reverse martensitic transformation occurs in the samples aged for 2 and 24 h due to the composition difference between the age-affected martensite and the original martensite. For the Co 46 Ni 27 Ga 27 alloy aged for 120 h, no reverse transformation can be detected due to the disappearance of the metastable age-affected martensite and the small latent heat of the original martensite. The martensitic transformation temperatures of the Co 46 Ni 27 Ga 27 alloy decrease with an increase in aging time.
文摘Martensitic stabilization caused by deformation in a TiNi shape memory alloy was studied.Special attention was paid to the deformed microstructures to identify the cause of martensitic stabilization.Martensitic stabilization was demonstrated by differential scanning calorimetry for the tensioned TiNi shape memory alloy.Transmission electron microscopy revealed that antiphase boundaries were formed because of the fourfold dissociation of [110]B19' super lattice dislocations and were preserved after reverse transformation due to the lattice correspondence.Martensitic stabilization was attributed to dislocations induced by deformation,which reduced the ordering degree of the microstructure,spoiled the reverse path from martensite to parent phase compared with thermoelastic transformation,and imposed resistance on phase transformation through the stress field.
文摘By consideration of the characteristics of martensitic transformation and the derivation from the application of the group theory to martensitic transformation, it may be concluded that the shape memory effect (SME) can be attained in materials through a martensitic transformation and its reverse transformation. only when there forms single or nearly single variant of martensite, with an absence of the factors causing the generation of the resistance against SME. on this principle, various shape memory materials including nonferrous alloys. iron-based alloys and ceramics containjng zirconia are expected to be further developed. A criterion for thermoelastic martensitic transformation is presented, Factors which may act as the resistance against SME in various materials are briefly described
文摘Shape memory alloys(SMAs)have been explored as smart materials and used as dampers,actuator elements,and smart sensors.An important character of SMAs is its ability to recover all of its large deformations in mechanical loading-unloading cycles without showing permanent deformation.This paper presents a stress-induced phenomenological constitutive equation for SMAs,which can be used to describe the superelastic hysteresis loops and phase transformation between Martensite and Austenite.The Martensite fraction of SMAs is assumed to be dependent on deviatoric stress tensor.Therefore,phase transformation of SMAs is volume preserving during the phase transformation.The model is implemented in large deformation finite element code and cast in the updated Lagrangian scheme.In order to use the Cauchy stress and the linear strain in constitutive laws,a frame indifferent stress objective rate has to be used.In this paper,the Jaumann stress rate is used.Results of the numerical experiments conducted in this study show that the superelastic hysteresis loops arising with the phase transformation can be effectively captured.
文摘The use of Ni-rich TiNiHf alloys as high temperature shape memory alloys (SMAs) through aging has been presented. For Ni-rich Ti80-xNixHf20 alloys, their phase transformation temperatures are averagely increased more than 100 K by aging at 823 K for 2 h. Especially for the alloys with Ni-content of 50.4 at. pct and 50.6 at. pct, their martensitic transformation start temperatures (Ms) are more than 473 K after aging. TEM observation confirmed that some fine particles precipitate from the matrix during aging. The aged Ni-rich TiNiHf SMAs show the better thermal stability of phase transformation temperatures than the solutiontreated TiNiHf alloys. The fine particles precipitated during aging should be responsible for the increase of phase transformation temperatures and its high stability.
文摘The hyperfine interactions of two shape memory alloys have been studied by Mossbauer effect measurement at various temperatures. The Mossbauer spectra exhibit a mag-netic change from antiferro magnetic state to paramagnetic state when the temperuture rises. The Fe-Mn-Si alloys have a small hyperfine field and silicon element increases the hyperfine field and magnetic susceptibility. Thermo-induced γ→ ε trunsforma-tions are suppressed by Neel transition and by increasing carbon content, whereas stress induced γ→ ε transformation occurs in both alloys. Antiferromagnetic spin order can suppress thermo-induced γ→εtransformations efficiently, but cannot sup-press stress induced γ → ε transformation.
文摘Plastic deformation of three CuZnAl shape memory alloys in martensitic state was investi- gated by means of optical and electron metallography,dilatometry and electric resistiviy de- termination.Two of the alloys are in martensitic state at ambient temperature,and the A_f temperature of the third one is far below the ambient temperature.The effect of deformation of alloys in martensitic state on the course and temperature of transformation as well as the hysteresis of transformation cycles has been analyzed and the “effect of the first cycle” has also been discussed.
文摘The reversible transformation between matrix and martensite in Ni-Ti shape memory alloys has been dynamically observed under TEM.The orientation relation between martensite and austenite as well as the structural change near the transition temperature has been also studied with the help of HREM SADP.The results show that the orientation relation between martensite and austenite is[11]_A//[10]_M,[110]_A//[001]_M,(110)_A//(001)_M and the angle between(110)_A and(010)_M is about 6.5°.The crystal defects of martensite are found to be twin and stacking fault,and the twin plane as(100).
文摘Measurements of electrical resistivity, X-ray diffraction, and tensile test at room temperature and ?196°C were performed to investigate the effects of Al addition substituting Ni on the phase transformation behaviors, the mechanical properties, and the shape memory effects of Ti50Ni47Fe2Al1 and Ti50Ni46.5Fe2.5Al1 alloys. It is found that 1at% Al addition dramatically decreases the martensitic start transformation temperature and expands the transformation temperature range of R-phase for TiNiFeAl alloys. The results of tensile test indicate that 1at% Al improves the yield strength of Ti50Ni47Fe2Al1 and Ti50Ni46.5Fe2.5Al1 alloys by 40% and 64%, but de- creases the plasticity to 11% and 12% from 26% and 27% respectively. Moreover, excellent shape memory effect of 6.6% and 7.5% were found in Ti50Ni47Fe2Al1 and Ti50Ni46.5Fe2.5Al1 alloys, which results from the stress-induced martensite transformation from the R-phase.
基金Funded by the National Natural Science Foundation of China(No.50071037)
文摘The reverse martensitic transformation of TiNi alloy wires prestrained in the parent phase was studied. Experimental results shou, that the reverse transformation of the TiNi allogys prestrained in the parent phase is significantly different from that of the TiNi alloys prestrained in the martensite phase. Three continual peaks appear on the DSC curves of wires with a small prestrain and one high temperature peak appears on the DSC curves of wires with a large prestrain.