Classification of multi-dimension time series(MTS) plays an important role in knowledge discovery of time series. Many methods for MTS classification have been presented. However, most of these methods did not conside...Classification of multi-dimension time series(MTS) plays an important role in knowledge discovery of time series. Many methods for MTS classification have been presented. However, most of these methods did not consider the kind of MTS whose discriminative subsequence was not restricted to one dimension and dynamic. In order to solve the above problem, a method to extract new features with extended shapelet transformation is proposed in this study. First, key features is extracted to replace k shapelets to calculate distance, which are extracted from candidate shapelets with one class for all dimensions. Second, feature of similarity numbers as a new feature is proposed to enhance the reliability of classification. Third, because of the time-consuming searching and clustering of shapelets, distance matrix is used to reduce the computing complexity. Experiments are carried out on public dataset and the results illustrate the effectiveness of the proposed method. Moreover, anode current signals(ACS) in the aluminum reduction cell are the aforementioned MTS, and the proposed method is successfully applied to the classification of ACS.展开更多
The operating state of bearing affects the performance of rotating machinery;thus,how to accurately extract features from the original vibration signals and recognise the faulty parts as early as possible is very crit...The operating state of bearing affects the performance of rotating machinery;thus,how to accurately extract features from the original vibration signals and recognise the faulty parts as early as possible is very critical.In this study,the one‐dimensional ternary model which has been proved to be an effective statistical method in feature selection is introduced and shapelet transformation is proposed to calculate the parameter of one‐dimensional ternary model that is usually selected by trial and error.Then XGBoost is used to recognise the faults from the obtained features,and artificial bee colony algorithm(ABC)is introduced to optimise the parameters of XGBoost.Moreover,for improving the performance of intelligent algorithm,an improved strategy where the evolution is guided by the probability that the optimal solution appears in certain solution space is proposed.The experimental results based on the failure vibration signal samples show that the average accuracy of fault signal recognition can reach 97%,which is much higher than the ones corresponding to traditional extraction strategies.And with the help of improved ABC algorithm,the performance of XGBoost classifier could be optimised;the accuracy could be improved from 97.02%to 98.60%compared with the traditional classification strategy.展开更多
基金Projects(61773405,61725306,61533020)supported by the National Natural Science Foundation of ChinaProject(2018zzts583)supported by the Fundamental Research Funds for the Central Universities,China
文摘Classification of multi-dimension time series(MTS) plays an important role in knowledge discovery of time series. Many methods for MTS classification have been presented. However, most of these methods did not consider the kind of MTS whose discriminative subsequence was not restricted to one dimension and dynamic. In order to solve the above problem, a method to extract new features with extended shapelet transformation is proposed in this study. First, key features is extracted to replace k shapelets to calculate distance, which are extracted from candidate shapelets with one class for all dimensions. Second, feature of similarity numbers as a new feature is proposed to enhance the reliability of classification. Third, because of the time-consuming searching and clustering of shapelets, distance matrix is used to reduce the computing complexity. Experiments are carried out on public dataset and the results illustrate the effectiveness of the proposed method. Moreover, anode current signals(ACS) in the aluminum reduction cell are the aforementioned MTS, and the proposed method is successfully applied to the classification of ACS.
基金National Nature Science Foundation of China,Grant/Award Number:U1813201the Key Scientific Research Projects of Henan Province,Grant/Award Number:22A413011+2 种基金the Training Program for Young Teachers in Universities of Henan Province,Grant/Award Number:2020GGJS137Henan Province Science and Technology R&D projects,Grant/Award Number:202102210135,212102310547 and 212102210080High‐end foreign expert program of Ministry of Science and Technology,Grant/Award Number:G2021026006L。
文摘The operating state of bearing affects the performance of rotating machinery;thus,how to accurately extract features from the original vibration signals and recognise the faulty parts as early as possible is very critical.In this study,the one‐dimensional ternary model which has been proved to be an effective statistical method in feature selection is introduced and shapelet transformation is proposed to calculate the parameter of one‐dimensional ternary model that is usually selected by trial and error.Then XGBoost is used to recognise the faults from the obtained features,and artificial bee colony algorithm(ABC)is introduced to optimise the parameters of XGBoost.Moreover,for improving the performance of intelligent algorithm,an improved strategy where the evolution is guided by the probability that the optimal solution appears in certain solution space is proposed.The experimental results based on the failure vibration signal samples show that the average accuracy of fault signal recognition can reach 97%,which is much higher than the ones corresponding to traditional extraction strategies.And with the help of improved ABC algorithm,the performance of XGBoost classifier could be optimised;the accuracy could be improved from 97.02%to 98.60%compared with the traditional classification strategy.