Two interval-valued intuitionistic uncertain linguistic hybrid operators cal ed the induced interval-valued intuitionistic uncertain linguistic hybrid Shapley averaging (I-IIULHSA) operator and the induced interval-...Two interval-valued intuitionistic uncertain linguistic hybrid operators cal ed the induced interval-valued intuitionistic uncertain linguistic hybrid Shapley averaging (I-IIULHSA) operator and the induced interval-valued intuitionistic uncertain linguistic hybrid Shapley geometric (I-IIULHSG) operator are defined. These operators not only reflect the importance of elements and their ordered positions, but also consider the correlations among elements and their ordered positions. Since the fuzzy measures are defined on the power set, it makes the problem exponentially complex. In order to simplify the complexity of solving a fuzzy measure, we further define the induced interval-valued intuitionistic uncertain linguistic hybrid λ-Shapley averaging (I-IIULHλSA) operator and the induced interval-valued intuitionistic uncertain linguistic hybrid λ-Shapley geometric (I-IIULHλSG) operator. Moreover, an approach for multi-attribute group decision making under the interval-valued intuitionistic uncertain linguistic environment is developed. Finally, a numerical example is provided to verify the developed procedure and demonstrate its practicality and feasibility.展开更多
In this study a new hybrid aggregation operator named as the generalized intuitionistic fuzzy hybrid Choquet averaging(GIFHCA) operator is defined.Meantime,some desirable properties are studied, and several importan...In this study a new hybrid aggregation operator named as the generalized intuitionistic fuzzy hybrid Choquet averaging(GIFHCA) operator is defined.Meantime,some desirable properties are studied, and several important cases are examined.Furthermore,we define the generalized Shapley GIFHCA (GS-GIFHCA) operator,which does not only overall consider the importance of elements and their ordered positions,but also globally reflect the correlations among them and their ordered positions.In order to simplify the complexity of solving a fuzzy measure,we further define the generalizedλ-Shapley GIFHCA(GλS-GIFHCA) operator.展开更多
基金supported by the National Natural Science Foundation of China(71201089)the Natural Science Foundation Youth Project of Shandong Province(ZR2012GQ005)
文摘Two interval-valued intuitionistic uncertain linguistic hybrid operators cal ed the induced interval-valued intuitionistic uncertain linguistic hybrid Shapley averaging (I-IIULHSA) operator and the induced interval-valued intuitionistic uncertain linguistic hybrid Shapley geometric (I-IIULHSG) operator are defined. These operators not only reflect the importance of elements and their ordered positions, but also consider the correlations among elements and their ordered positions. Since the fuzzy measures are defined on the power set, it makes the problem exponentially complex. In order to simplify the complexity of solving a fuzzy measure, we further define the induced interval-valued intuitionistic uncertain linguistic hybrid λ-Shapley averaging (I-IIULHλSA) operator and the induced interval-valued intuitionistic uncertain linguistic hybrid λ-Shapley geometric (I-IIULHλSG) operator. Moreover, an approach for multi-attribute group decision making under the interval-valued intuitionistic uncertain linguistic environment is developed. Finally, a numerical example is provided to verify the developed procedure and demonstrate its practicality and feasibility.
基金supported by the National Natural Science Foundation of China(Nos.71201089,71201110, 71071018 and 71271217)the Natural Science Foundation Youth Project of Shandong Province,China (ZR2012GQ005)the Specialized Research Fund for the Doctoral Program of Higher Education(No. 20111101110036)
文摘In this study a new hybrid aggregation operator named as the generalized intuitionistic fuzzy hybrid Choquet averaging(GIFHCA) operator is defined.Meantime,some desirable properties are studied, and several important cases are examined.Furthermore,we define the generalized Shapley GIFHCA (GS-GIFHCA) operator,which does not only overall consider the importance of elements and their ordered positions,but also globally reflect the correlations among them and their ordered positions.In order to simplify the complexity of solving a fuzzy measure,we further define the generalizedλ-Shapley GIFHCA(GλS-GIFHCA) operator.