Classical Correlations were founded in 1900 by Karl Pearson and have since been applied as a statistical tool in virtually all sciences. Quantum correlations go back to Albert Einstein et al. in 1935 and Erwin Schr...Classical Correlations were founded in 1900 by Karl Pearson and have since been applied as a statistical tool in virtually all sciences. Quantum correlations go back to Albert Einstein et al. in 1935 and Erwin Schrödinger’s responses shortly after. In this paper, we contrast classical with quantum correlations. We find that classical correlations are weaker than quantum correlations in the CHSH framework. With respect to correlation matrices, the trace of classical correlation matrices is dissimilar to quantum density matrices. However, the off-diagonal terms have equivalent interpretations. We contrast classical dynamic (i.e., time evolving) stochastic correlation with dynamic quantum density matrices and find that the off-diagonal elements, while different in nature, have similar interpretations. So far, due to the laws of quantum physics, no classical correlations are applied to the quantum spectrum. However, conversely, quantum correlations are applied in classical environments such as quantum computing, cryptography, metrology, teleportation, medical imaging, laser technology, the quantum Internet and more.展开更多
We investigate analytically the dynamics of classical and quantum correlations between two strongly driven atoms, each of which is trapped inside a dissipative cavity. It is found that there exists a finite time inter...We investigate analytically the dynamics of classical and quantum correlations between two strongly driven atoms, each of which is trapped inside a dissipative cavity. It is found that there exists a finite time interval during which the quantum discord initially prepared in the X-type states is not destroyed by the decay of the cavities. The sudden transition between classical correlation and quantum discord is sensitive to the initial-state parameter, the cavity decay rate, and the cavity mode-driving field detuning. Interestingly, we show that the transition time can be prolonged significantly by increasing the degree of the detuning.展开更多
We derive explicit expressions for quantum discord and classical correlation for an X structure density matrix. Based on the characteristics of the expressions, the quantum discord and the classical correlation are ea...We derive explicit expressions for quantum discord and classical correlation for an X structure density matrix. Based on the characteristics of the expressions, the quantum discord and the classical correlation are easily obtained and compared under different initial conditions using a novel analytical method. We explain the relationships among quantum discord, classical correlation, and entanglement, and further find that the quantum discord is not always larger than the entanglement measured by concurrence in a general two-qubit X state. The new method, which is different from previous approaches, has certain guiding significance for analysing quantum discord and classical correlation of a two-qubit X state, such as a mixed state.展开更多
Quantum secret sharing(QSS) is a procedure of sharing classical information or quantum information by using quantum states. This paper presents how to use a [2k- 1, 1, k] quantum error-correcting code (QECC) to im...Quantum secret sharing(QSS) is a procedure of sharing classical information or quantum information by using quantum states. This paper presents how to use a [2k- 1, 1, k] quantum error-correcting code (QECC) to implement a quantum (k, 2k-1) threshold scheme. It also takes advantage of classical enhancement of the [2k-1, 1, k] QECC to establish a QSS scheme which can share classical information and quantum information simultaneously. Because information is encoded into QECC, these schemes can prevent intercept-resend attacks and be implemented on some noisy channels.展开更多
When Einstein developed the special theory of relativity (STR), he assumed the principle of relativity, i.e. that all inertial frames are equivalent. Einstein thought it was impossible to differentiate inertial frames...When Einstein developed the special theory of relativity (STR), he assumed the principle of relativity, i.e. that all inertial frames are equivalent. Einstein thought it was impossible to differentiate inertial frames into classically stationary frames where light propagates isotropically, and classically moving frames where light propagates anisotropically. However, the author has previously pointed out that classically moving frames have a velocity vector attached, and presented a thought experiment for determining the size of that velocity vector. The author has already shown a violation of the STR, but this paper presents a violation of the STR using different reasoning. More specifically, this paper searches for a coordinate system where light propagates anisotropically. This is done by using the correlation of two photons pair-generated from a photon pair generator. If the existence of such a coordinate system can be ascertained, it will constitute a violation of the STR.展开更多
We examine here the proposition that all multiparty quantum states can be made monogamous by considering positive integral powers of any quantum correlation measure. With Rajagopal-Rendell quantum deficit as the measu...We examine here the proposition that all multiparty quantum states can be made monogamous by considering positive integral powers of any quantum correlation measure. With Rajagopal-Rendell quantum deficit as the measure of quantum correlations for symmetric 3-qubit pure states, we illustrate that monogamy inequality is satisfied for higher powers of quantum deficit. We discuss the drawbacks of this inequality in quantification of correlations in the state. We also prove a monogamy inequality in higher powers of classical mutual information and bring out the fact that such inequality needs not necessarily imply restricted shareability of correlations. We thus disprove the utility of higher powers of any correlation measure in establishing monogamous nature in multiparty quantum states.展开更多
The level surfaces of quantum discord for a class of two-qubit states are investigated when the Bloch vectors T and S are perpendicularly oriented. The geometric objects of tetrahedron T and octahedron 0 are deformed....The level surfaces of quantum discord for a class of two-qubit states are investigated when the Bloch vectors T and S are perpendicularly oriented. The geometric objects of tetrahedron T and octahedron 0 are deformed. The level surfaces of constant discord are formed by three interaction "tubes" along three orthogonal directions. They shrink to the center when the B1oeh vectors are increased and are expanded and cut off by the state tetrahedron T when the quantum discord is increased, in the phase damping channel, the quantum discord keeps approximately a constant when the time increases.展开更多
文摘Classical Correlations were founded in 1900 by Karl Pearson and have since been applied as a statistical tool in virtually all sciences. Quantum correlations go back to Albert Einstein et al. in 1935 and Erwin Schrödinger’s responses shortly after. In this paper, we contrast classical with quantum correlations. We find that classical correlations are weaker than quantum correlations in the CHSH framework. With respect to correlation matrices, the trace of classical correlation matrices is dissimilar to quantum density matrices. However, the off-diagonal terms have equivalent interpretations. We contrast classical dynamic (i.e., time evolving) stochastic correlation with dynamic quantum density matrices and find that the off-diagonal elements, while different in nature, have similar interpretations. So far, due to the laws of quantum physics, no classical correlations are applied to the quantum spectrum. However, conversely, quantum correlations are applied in classical environments such as quantum computing, cryptography, metrology, teleportation, medical imaging, laser technology, the quantum Internet and more.
基金supported by the National Natural Science Foundation of China(Grant Nos.11205056 and 11247308)the Special Funds for the Co-construction Project of Beijing
文摘We investigate analytically the dynamics of classical and quantum correlations between two strongly driven atoms, each of which is trapped inside a dissipative cavity. It is found that there exists a finite time interval during which the quantum discord initially prepared in the X-type states is not destroyed by the decay of the cavities. The sudden transition between classical correlation and quantum discord is sensitive to the initial-state parameter, the cavity decay rate, and the cavity mode-driving field detuning. Interestingly, we show that the transition time can be prolonged significantly by increasing the degree of the detuning.
基金supported by the Natural Science Foundation of Hunan Province of China (Grant No. 09JJ6011)the Natural Science Foundation of Education Department of Hunan Province, China (Grant Nos. 08A055 and 07C528)
文摘We derive explicit expressions for quantum discord and classical correlation for an X structure density matrix. Based on the characteristics of the expressions, the quantum discord and the classical correlation are easily obtained and compared under different initial conditions using a novel analytical method. We explain the relationships among quantum discord, classical correlation, and entanglement, and further find that the quantum discord is not always larger than the entanglement measured by concurrence in a general two-qubit X state. The new method, which is different from previous approaches, has certain guiding significance for analysing quantum discord and classical correlation of a two-qubit X state, such as a mixed state.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61072071)
文摘Quantum secret sharing(QSS) is a procedure of sharing classical information or quantum information by using quantum states. This paper presents how to use a [2k- 1, 1, k] quantum error-correcting code (QECC) to implement a quantum (k, 2k-1) threshold scheme. It also takes advantage of classical enhancement of the [2k-1, 1, k] QECC to establish a QSS scheme which can share classical information and quantum information simultaneously. Because information is encoded into QECC, these schemes can prevent intercept-resend attacks and be implemented on some noisy channels.
文摘When Einstein developed the special theory of relativity (STR), he assumed the principle of relativity, i.e. that all inertial frames are equivalent. Einstein thought it was impossible to differentiate inertial frames into classically stationary frames where light propagates isotropically, and classically moving frames where light propagates anisotropically. However, the author has previously pointed out that classically moving frames have a velocity vector attached, and presented a thought experiment for determining the size of that velocity vector. The author has already shown a violation of the STR, but this paper presents a violation of the STR using different reasoning. More specifically, this paper searches for a coordinate system where light propagates anisotropically. This is done by using the correlation of two photons pair-generated from a photon pair generator. If the existence of such a coordinate system can be ascertained, it will constitute a violation of the STR.
文摘We examine here the proposition that all multiparty quantum states can be made monogamous by considering positive integral powers of any quantum correlation measure. With Rajagopal-Rendell quantum deficit as the measure of quantum correlations for symmetric 3-qubit pure states, we illustrate that monogamy inequality is satisfied for higher powers of quantum deficit. We discuss the drawbacks of this inequality in quantification of correlations in the state. We also prove a monogamy inequality in higher powers of classical mutual information and bring out the fact that such inequality needs not necessarily imply restricted shareability of correlations. We thus disprove the utility of higher powers of any correlation measure in establishing monogamous nature in multiparty quantum states.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11074184,11204197the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20103201120002the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘The level surfaces of quantum discord for a class of two-qubit states are investigated when the Bloch vectors T and S are perpendicularly oriented. The geometric objects of tetrahedron T and octahedron 0 are deformed. The level surfaces of constant discord are formed by three interaction "tubes" along three orthogonal directions. They shrink to the center when the B1oeh vectors are increased and are expanded and cut off by the state tetrahedron T when the quantum discord is increased, in the phase damping channel, the quantum discord keeps approximately a constant when the time increases.