Water-locking flocs formed by ultrafine tailings particles will damage the thickener underflow concentration in the thickening process during paste preparation.The relationship between the mesostructure and seepage ch...Water-locking flocs formed by ultrafine tailings particles will damage the thickener underflow concentration in the thickening process during paste preparation.The relationship between the mesostructure and seepage characteristics of tail mortar is typically ignored when investigating the deep dehydration stage.A shearing seepage test of an unclassified tailing-sedimentation bed was performed with copper tailings,and the morphology and geometric distribution of micropores were analyzed via X-ray computed tomography.Moreover,the shearing evolution of the micropore structure and seepage channel was investigated to evaluate the dewatering performance of underflow slurry using a three-dimensional reconstruction approach.The results show that porosity decreases considerably under shearing.The connected-pore ratio and the average radius of the throat channel reach peak values of 0.79 and 31.38μm,respectively,when shearing is applied for 10 min.However,the reverse seepage velocity and absolute permeability in the bed decrease to various extents after shearing.Meanwhile,the maximum flow rate reaches 1.537μm/s and the absolute permeability increases by 14.16%.Shearing alters the formation process and the pore structure of the seepage channel.Isolated pores connect to the surrounding flocs to form branch channels,which then become the main seepage channel and create the dominant water-seepage flow channel.展开更多
This paper studies the critical time span and the approximate nonlinear action structure of climatic atmosphere and ocean. The critical time span of the climatic atmosphere and ocean, which is related to the spatial r...This paper studies the critical time span and the approximate nonlinear action structure of climatic atmosphere and ocean. The critical time span of the climatic atmosphere and ocean, which is related to the spatial resolution required, the strength of nonlinear action, and the calculation exactness, may represent the relative temporal scale of predictability. As far as the same characteristic spatial scale is concerned, the minimum critical time span of the ocean is about 9 times of that of atmosphere, several days or more. Usually, the stronger the nonlinear action, the shorter the critical time span with smooth changes of external forces. The approximate structure of nonlinear action of climatic atmosphere and ocean is: the nonlinear action decreases usually with increasing latitude, which is related to the role of the Coriolis force in fluid motion (forming geostrophic current); the nonlinear action changes with the anomalous cyclonic or anticyclonic circulation shear, for instance, when the strength of anomalous eastward zonal circulation is comparable to that of anomalous meridional circulation, the nonlinear action is the strongest; wind stress plus gradient forces enhance the nonlinear action, etc.展开更多
Gao's viscous/in-viscid interacting shear flows (ISF) theory, proposed by professor Gao Zhi in Institute of Mechanics, China Academy of Science, and its inferences and their applications in computational fluid dyna...Gao's viscous/in-viscid interacting shear flows (ISF) theory, proposed by professor Gao Zhi in Institute of Mechanics, China Academy of Science, and its inferences and their applications in computational fluid dynamics (CFD) are reviewed and some subjects worthy to be studied are pro- posed in this paper. The flow-field and motion law of ISF, mathematics definition of strong viscous shear layer flow in ISF, ISF equations, wall-surface compatibility criteria (Gao's criteria ), space scale variety law of strong viscous shear layer reveals flow mechanism and local space small scale triggered by strong interaction that cause some abnormal severe local pneumatic heating phenomenon in hypersonic flow. Gao's ISF theory was used in near wall flow, free ISF flow simulation and design of computing grids, Gao's wall-surface criteria were used to verify calculation reliability and accuracy of near wall flows, ISF theory approximate analytical result of shock waves-boundary layer interac- tion and ISF equations were used to obtain the numerical exact solution of local area flow ( such as stationary point flow). Some new subjects, such as, improving near-wall turbulent models according to the turbulent flow simulation satisfying the wall-criteria and illustrating relation between grid-con- vergence based on the wall criteria and other convergence tactics, are suggested. The necessity of applying Gao's ISF theory and wall criteria is revealed. Difficulties and importance of hypersonic vis- cous/in-viscid interaction phenomenon were also emphasized.展开更多
基金supported by the National Natural Science Foundation of China (No.51834001)。
文摘Water-locking flocs formed by ultrafine tailings particles will damage the thickener underflow concentration in the thickening process during paste preparation.The relationship between the mesostructure and seepage characteristics of tail mortar is typically ignored when investigating the deep dehydration stage.A shearing seepage test of an unclassified tailing-sedimentation bed was performed with copper tailings,and the morphology and geometric distribution of micropores were analyzed via X-ray computed tomography.Moreover,the shearing evolution of the micropore structure and seepage channel was investigated to evaluate the dewatering performance of underflow slurry using a three-dimensional reconstruction approach.The results show that porosity decreases considerably under shearing.The connected-pore ratio and the average radius of the throat channel reach peak values of 0.79 and 31.38μm,respectively,when shearing is applied for 10 min.However,the reverse seepage velocity and absolute permeability in the bed decrease to various extents after shearing.Meanwhile,the maximum flow rate reaches 1.537μm/s and the absolute permeability increases by 14.16%.Shearing alters the formation process and the pore structure of the seepage channel.Isolated pores connect to the surrounding flocs to form branch channels,which then become the main seepage channel and create the dominant water-seepage flow channel.
基金Acknowledgments. This study is supported by the Key National Program for Developing Basic Sciences (G1999043802) and the National Natural Science Fundation of China under Grant No.49876011.
文摘This paper studies the critical time span and the approximate nonlinear action structure of climatic atmosphere and ocean. The critical time span of the climatic atmosphere and ocean, which is related to the spatial resolution required, the strength of nonlinear action, and the calculation exactness, may represent the relative temporal scale of predictability. As far as the same characteristic spatial scale is concerned, the minimum critical time span of the ocean is about 9 times of that of atmosphere, several days or more. Usually, the stronger the nonlinear action, the shorter the critical time span with smooth changes of external forces. The approximate structure of nonlinear action of climatic atmosphere and ocean is: the nonlinear action decreases usually with increasing latitude, which is related to the role of the Coriolis force in fluid motion (forming geostrophic current); the nonlinear action changes with the anomalous cyclonic or anticyclonic circulation shear, for instance, when the strength of anomalous eastward zonal circulation is comparable to that of anomalous meridional circulation, the nonlinear action is the strongest; wind stress plus gradient forces enhance the nonlinear action, etc.
基金Supported by the National Natural Science Foundation(10702009)
文摘Gao's viscous/in-viscid interacting shear flows (ISF) theory, proposed by professor Gao Zhi in Institute of Mechanics, China Academy of Science, and its inferences and their applications in computational fluid dynamics (CFD) are reviewed and some subjects worthy to be studied are pro- posed in this paper. The flow-field and motion law of ISF, mathematics definition of strong viscous shear layer flow in ISF, ISF equations, wall-surface compatibility criteria (Gao's criteria ), space scale variety law of strong viscous shear layer reveals flow mechanism and local space small scale triggered by strong interaction that cause some abnormal severe local pneumatic heating phenomenon in hypersonic flow. Gao's ISF theory was used in near wall flow, free ISF flow simulation and design of computing grids, Gao's wall-surface criteria were used to verify calculation reliability and accuracy of near wall flows, ISF theory approximate analytical result of shock waves-boundary layer interac- tion and ISF equations were used to obtain the numerical exact solution of local area flow ( such as stationary point flow). Some new subjects, such as, improving near-wall turbulent models according to the turbulent flow simulation satisfying the wall-criteria and illustrating relation between grid-con- vergence based on the wall criteria and other convergence tactics, are suggested. The necessity of applying Gao's ISF theory and wall criteria is revealed. Difficulties and importance of hypersonic vis- cous/in-viscid interaction phenomenon were also emphasized.