The Shimian area of Sichuan sits at the junction of the Bayan Har block.Sichuan-Yunnan rhombic block,and Yangtze block,where several faults intersect.This region features intense tectonic activity and frequent earthqu...The Shimian area of Sichuan sits at the junction of the Bayan Har block.Sichuan-Yunnan rhombic block,and Yangtze block,where several faults intersect.This region features intense tectonic activity and frequent earthquakes.In this study,we used local seismic waveform data recorded using dense arrays deployed in the Shimian area to obtain the shear wave splitting parameters at 55 seismic stations and thereby determine the crustal anisotropic characteristics of the region.We then analyzed the crustal stress pattern and tectonic setting and explored their relationship in the study area.Although some stations returned a polarization direction of NNW-SSE.a dominant polarization direction of NW-SE was obtained for the fast shear wave at most seismic stations in the study area.The polarization directions of the fast shear wave were highly consistent throughout the study-area.This orientation was in accordance with the direction of the regional principal compressive stress and parallel to the trend of the Xianshuihe and Daliangshan faults.The distribution of crustal anisotropy in this area was affected by the regional tectonic stress field and the fault structures.The mean delay time between fast and slow shear waves was 3.83 ms/km.slightly greater than the values obtained in other regions of Sichuan.This indicates that the crustal media in our study area had a high anisotropic strength and also reveals the influence of tectonic complexity resulting from the intersection of multiple faults on the strength of seismic anisotropy.展开更多
A set of constitutive equations are derived based on the authors'lower bound yield loci for porous materials. By using these equations, the conditions for shear localization in porous materials are then investigat...A set of constitutive equations are derived based on the authors'lower bound yield loci for porous materials. By using these equations, the conditions for shear localization in porous materials are then investigated and the results are compared with those of Gurson's equations and the finite element analysis. The advantages of the present constitutive equations are fully illustrated.展开更多
The size-dependent effect on the biaxial and shear nonlinear buckling analysis of an isotropic and orthotropic micro-plate based on the surface stress, the modified couple stress theory (MCST), and the nonlocal elas...The size-dependent effect on the biaxial and shear nonlinear buckling analysis of an isotropic and orthotropic micro-plate based on the surface stress, the modified couple stress theory (MCST), and the nonlocal elasticity theories using the differential quadrature method (DQM) is presented. Main advantages of the MCST over the classical theory (CT) are the inclusion of the asymmetric couple stress tensor and the consideration of only one material length scale parameter. Based on the nonlinear von Karman assumption, the governing equations of equilibrium for the micro-classical plate consid- ering midplane displacements are derived based on the minimum principle of potential energy. Using the DQM, the biaxial and shear critical buckling loads of the micro-plate for various boundary conditions are obtained. Accuracy of the obtained results is validated by comparing the solutions with those reported in the literature. A parametric study is conducted to show the effects of the aspect ratio, the side-to-thickness ratio, Eringen's nonlocal parameter, the material length scale parameter, Young's modulus of the surface layer, the surface residual stress, the polymer matrix coefficients, and various boundary conditions on the dimensionless uniaxial, biaxial, and shear critical buckling loads. The results indicate that the critical buckling loads are strongly sensitive to Eringen's nonlocal parameter, the material length scale parameter, and the surface residual stress effects, while the effect of Young's modulus of the surface layer on the critical buckling load is negligible. Also, considering the size dependent effect causes the increase in the stiffness of the orthotropic micro-plate. The results show that the critical biaxial buckling load increases with an increase in G12/E2 and vice versa for E1/E2. It is shown that the nonlinear biaxial buckling ratio decreases as the aspect ratio increases and vice versa for the buckling amplitude. Because of the most lightweight micro-composite materials with high strength/weight and stiffness/weight ratios, it is anticipated that the results of the present work are useful in experimental characterization of the mechanical properties of micro-composite plates in the aircraft industry and other engineering applications.展开更多
Based on the continuously stratified quasi-geostrophic vorticity equation. the present paper analyses the instabilityof three-dimensional shear waves.The cause that most shear waves occur on the shelfside of strong cu...Based on the continuously stratified quasi-geostrophic vorticity equation. the present paper analyses the instabilityof three-dimensional shear waves.The cause that most shear waves occur on the shelfside of strong current near the west boundaries of the oceans is presented. The growth rate of small perturbations relies on the stratification charctters, and a maximum value of growth rate exists for certain stratification.展开更多
According to the observation in experiment of stability of the oil film, the assumption of velocity distribution for both the water flow and the oil film is introduced. On the basis of the assumption, Orr-Sommerfeld s...According to the observation in experiment of stability of the oil film, the assumption of velocity distribution for both the water flow and the oil film is introduced. On the basis of the assumption, Orr-Sommerfeld stability equation is applied to develop the method of determining the critical velocity of the oil film, and the criterion for stability of the oil film is obtained. Meanwhile, a formula describing the relation between the thickness of the oil film and the velocity of the water flow is also given and examined by the laboratory experiment.展开更多
Based on the hydrodynamic stability theory of distorted laminar flow and the kind of distortion profiles on the mean velocity in parallel shear flow given in paper [1], this paper investigates the linear stability beh...Based on the hydrodynamic stability theory of distorted laminar flow and the kind of distortion profiles on the mean velocity in parallel shear flow given in paper [1], this paper investigates the linear stability behaviour of parallel shear flow, presents unstable results of plane Couette flow and pipe Poiseuille flow to two-dimensional or axisymmetric disturbances for the first time, and obtains neutral curves of these two motions under certain definition.展开更多
Based on the hydrodynamic stability theory of distorted laminar flow and the kind of distortion profiles on the mean velocity in parallel shear flow given in paper [1], this paper investigates the nonlinear stability ...Based on the hydrodynamic stability theory of distorted laminar flow and the kind of distortion profiles on the mean velocity in parallel shear flow given in paper [1], this paper investigates the nonlinear stability behaviour of parallel shear flow, carries on stability calculation taking account of the perturbations of background turbulence noise under certain assumption, and obtains some results in accordance qualitatively with those of experiment for plane Poiseuille flow and pipe Poiseuille flow.展开更多
A modified energy-balance equation accounting for P-delta effects and hysteretic behavior of reinforced concrete members is derived. Reduced hysteretic properties of structural components due to combined stiffness and...A modified energy-balance equation accounting for P-delta effects and hysteretic behavior of reinforced concrete members is derived. Reduced hysteretic properties of structural components due to combined stiffness and strength degradation and pinching effects, and hysteretic damping are taken into account in a simple manner by utilizing plastic energy and seismic input energy modification factors. Having a pre-selected yield mechanism, energy balance of structure in inelastic range is considered. P-delta effects are included in derived equation by adding the external work of gravity loads to the work of equivalent inertia forces and equating the total external work to the modified plastic energy. Earthquake energy input to multi degree of freedom(MDOF) system is approximated by using the modal energy-decomposition. Energybased base shear coefficients are verified by means of both pushover analysis and nonlinear time history(NLTH) analysis of several RC frames having different number of stories. NLTH analyses of frames are performed by using the time histories of ten scaled ground motions compatible with elastic design acceleration spectrum and fulfilling duration/amplitude related requirements of Turkish Seismic Design Code. The observed correlation between energy-based base shear force coefficients and the average base shear force coefficients of NLTH analyses provides a reasonable confidence in estimation of nonlinear base shear force capacity of frames by using the derived equation.展开更多
A systematic study has been conducted aiming to attain an insight into the influence of coefficient of roll speed asymmetry, crystal orientation and structure on the deformation behavior, and crystallographic orientat...A systematic study has been conducted aiming to attain an insight into the influence of coefficient of roll speed asymmetry, crystal orientation and structure on the deformation behavior, and crystallographic orientation development during foil rolling. Simulations were successfully carried out by using crystal plasticity finite element method(CPFEM),and a novel computational framework is presented for the representation of virtual polycrystalline grain structures. It has been found that asymmetric rolling(ASR) is more efficient in producing plastic deformation since it develops additional shear strain and activity of slip system compared with symmetric rolling(SR). For ASR, increase in the length of the shear zone, and decrease in the amount of the pressure and roll force would lead to further reduction. The shear strain path in SR and ASR is strictly influenced by the misorientation of neighbor grains, and corresponding {1 1 1} pole figures offer direct evidence of the spread of crystallographic orientation around the normal direction. The activity of slip systems was examined in detail and found that the predicted results are consistent with the surface layer model. The accuracy of the developed CPFEM model is verified by the fact that the simulated results of roll force coincide well with the experimental results.展开更多
It is well known that voids have detrimental effects on the performance of composites. This study aims to provide a practical method for predicting the effects of process induced voids on the properties of composites....It is well known that voids have detrimental effects on the performance of composites. This study aims to provide a practical method for predicting the effects of process induced voids on the properties of composites. Representative volume elements (RVE) for carbon fibre/epoxy composites of various fibre volume fractions and void contents are created, and the moduli and strengths are derived by finite element anal- ysis (FEA). Regression models are fitted to the FEA data for predicting composite properties including tensile, compressive and shear. The strengths of composite laminates including tensile strngth and interlaminar shear strength (ILSS) are calculated with the aid of the developed models. The model predictions are compared with various experimental data and good agreement is found. The outcome from this study provides a useful optimisation and robust design tool for realising affordable composite prod- ucts when process induced voids are taken into account.展开更多
基金This work is jointly supported by the National Natural Science Foundation of China(No.41904057)the National Key Research and Development Program of China(No.2018YFC1503402).
文摘The Shimian area of Sichuan sits at the junction of the Bayan Har block.Sichuan-Yunnan rhombic block,and Yangtze block,where several faults intersect.This region features intense tectonic activity and frequent earthquakes.In this study,we used local seismic waveform data recorded using dense arrays deployed in the Shimian area to obtain the shear wave splitting parameters at 55 seismic stations and thereby determine the crustal anisotropic characteristics of the region.We then analyzed the crustal stress pattern and tectonic setting and explored their relationship in the study area.Although some stations returned a polarization direction of NNW-SSE.a dominant polarization direction of NW-SE was obtained for the fast shear wave at most seismic stations in the study area.The polarization directions of the fast shear wave were highly consistent throughout the study-area.This orientation was in accordance with the direction of the regional principal compressive stress and parallel to the trend of the Xianshuihe and Daliangshan faults.The distribution of crustal anisotropy in this area was affected by the regional tectonic stress field and the fault structures.The mean delay time between fast and slow shear waves was 3.83 ms/km.slightly greater than the values obtained in other regions of Sichuan.This indicates that the crustal media in our study area had a high anisotropic strength and also reveals the influence of tectonic complexity resulting from the intersection of multiple faults on the strength of seismic anisotropy.
文摘A set of constitutive equations are derived based on the authors'lower bound yield loci for porous materials. By using these equations, the conditions for shear localization in porous materials are then investigated and the results are compared with those of Gurson's equations and the finite element analysis. The advantages of the present constitutive equations are fully illustrated.
基金supported by the Iranian Nanotechnology Development Committee and the University of Kashan(No.363452/10)
文摘The size-dependent effect on the biaxial and shear nonlinear buckling analysis of an isotropic and orthotropic micro-plate based on the surface stress, the modified couple stress theory (MCST), and the nonlocal elasticity theories using the differential quadrature method (DQM) is presented. Main advantages of the MCST over the classical theory (CT) are the inclusion of the asymmetric couple stress tensor and the consideration of only one material length scale parameter. Based on the nonlinear von Karman assumption, the governing equations of equilibrium for the micro-classical plate consid- ering midplane displacements are derived based on the minimum principle of potential energy. Using the DQM, the biaxial and shear critical buckling loads of the micro-plate for various boundary conditions are obtained. Accuracy of the obtained results is validated by comparing the solutions with those reported in the literature. A parametric study is conducted to show the effects of the aspect ratio, the side-to-thickness ratio, Eringen's nonlocal parameter, the material length scale parameter, Young's modulus of the surface layer, the surface residual stress, the polymer matrix coefficients, and various boundary conditions on the dimensionless uniaxial, biaxial, and shear critical buckling loads. The results indicate that the critical buckling loads are strongly sensitive to Eringen's nonlocal parameter, the material length scale parameter, and the surface residual stress effects, while the effect of Young's modulus of the surface layer on the critical buckling load is negligible. Also, considering the size dependent effect causes the increase in the stiffness of the orthotropic micro-plate. The results show that the critical biaxial buckling load increases with an increase in G12/E2 and vice versa for E1/E2. It is shown that the nonlinear biaxial buckling ratio decreases as the aspect ratio increases and vice versa for the buckling amplitude. Because of the most lightweight micro-composite materials with high strength/weight and stiffness/weight ratios, it is anticipated that the results of the present work are useful in experimental characterization of the mechanical properties of micro-composite plates in the aircraft industry and other engineering applications.
文摘Based on the continuously stratified quasi-geostrophic vorticity equation. the present paper analyses the instabilityof three-dimensional shear waves.The cause that most shear waves occur on the shelfside of strong current near the west boundaries of the oceans is presented. The growth rate of small perturbations relies on the stratification charctters, and a maximum value of growth rate exists for certain stratification.
文摘According to the observation in experiment of stability of the oil film, the assumption of velocity distribution for both the water flow and the oil film is introduced. On the basis of the assumption, Orr-Sommerfeld stability equation is applied to develop the method of determining the critical velocity of the oil film, and the criterion for stability of the oil film is obtained. Meanwhile, a formula describing the relation between the thickness of the oil film and the velocity of the water flow is also given and examined by the laboratory experiment.
文摘Based on the hydrodynamic stability theory of distorted laminar flow and the kind of distortion profiles on the mean velocity in parallel shear flow given in paper [1], this paper investigates the linear stability behaviour of parallel shear flow, presents unstable results of plane Couette flow and pipe Poiseuille flow to two-dimensional or axisymmetric disturbances for the first time, and obtains neutral curves of these two motions under certain definition.
文摘Based on the hydrodynamic stability theory of distorted laminar flow and the kind of distortion profiles on the mean velocity in parallel shear flow given in paper [1], this paper investigates the nonlinear stability behaviour of parallel shear flow, carries on stability calculation taking account of the perturbations of background turbulence noise under certain assumption, and obtains some results in accordance qualitatively with those of experiment for plane Poiseuille flow and pipe Poiseuille flow.
文摘A modified energy-balance equation accounting for P-delta effects and hysteretic behavior of reinforced concrete members is derived. Reduced hysteretic properties of structural components due to combined stiffness and strength degradation and pinching effects, and hysteretic damping are taken into account in a simple manner by utilizing plastic energy and seismic input energy modification factors. Having a pre-selected yield mechanism, energy balance of structure in inelastic range is considered. P-delta effects are included in derived equation by adding the external work of gravity loads to the work of equivalent inertia forces and equating the total external work to the modified plastic energy. Earthquake energy input to multi degree of freedom(MDOF) system is approximated by using the modal energy-decomposition. Energybased base shear coefficients are verified by means of both pushover analysis and nonlinear time history(NLTH) analysis of several RC frames having different number of stories. NLTH analyses of frames are performed by using the time histories of ten scaled ground motions compatible with elastic design acceleration spectrum and fulfilling duration/amplitude related requirements of Turkish Seismic Design Code. The observed correlation between energy-based base shear force coefficients and the average base shear force coefficients of NLTH analyses provides a reasonable confidence in estimation of nonlinear base shear force capacity of frames by using the derived equation.
基金financially supported by the National Natural Science Foundation of China (Nos. 51374069 and U1460107)
文摘A systematic study has been conducted aiming to attain an insight into the influence of coefficient of roll speed asymmetry, crystal orientation and structure on the deformation behavior, and crystallographic orientation development during foil rolling. Simulations were successfully carried out by using crystal plasticity finite element method(CPFEM),and a novel computational framework is presented for the representation of virtual polycrystalline grain structures. It has been found that asymmetric rolling(ASR) is more efficient in producing plastic deformation since it develops additional shear strain and activity of slip system compared with symmetric rolling(SR). For ASR, increase in the length of the shear zone, and decrease in the amount of the pressure and roll force would lead to further reduction. The shear strain path in SR and ASR is strictly influenced by the misorientation of neighbor grains, and corresponding {1 1 1} pole figures offer direct evidence of the spread of crystallographic orientation around the normal direction. The activity of slip systems was examined in detail and found that the predicted results are consistent with the surface layer model. The accuracy of the developed CPFEM model is verified by the fact that the simulated results of roll force coincide well with the experimental results.
文摘It is well known that voids have detrimental effects on the performance of composites. This study aims to provide a practical method for predicting the effects of process induced voids on the properties of composites. Representative volume elements (RVE) for carbon fibre/epoxy composites of various fibre volume fractions and void contents are created, and the moduli and strengths are derived by finite element anal- ysis (FEA). Regression models are fitted to the FEA data for predicting composite properties including tensile, compressive and shear. The strengths of composite laminates including tensile strngth and interlaminar shear strength (ILSS) are calculated with the aid of the developed models. The model predictions are compared with various experimental data and good agreement is found. The outcome from this study provides a useful optimisation and robust design tool for realising affordable composite prod- ucts when process induced voids are taken into account.