期刊文献+
共找到107篇文章
< 1 2 6 >
每页显示 20 50 100
Shear band evolution and acoustic emission characteristics of sandstone containing non-persistent flaws
1
作者 Shuting Miao Peng-Zhi Pan +1 位作者 Chuanqing Zhang Lei Huo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期497-513,共17页
Direct shear tests were conducted on sandstone specimens under different constant normal stresses to study the coalescence of cracks between non-persistent flaws and the shear sliding characteristics of the shear-form... Direct shear tests were conducted on sandstone specimens under different constant normal stresses to study the coalescence of cracks between non-persistent flaws and the shear sliding characteristics of the shear-formed fault.Digital image correlation and acoustic emission(AE)techniques were used to monitor the evolution of shear bands at the rock bridge area and microcracking behaviors.The experimental results revealed that the shear stresses corresponding to the peak and sub-peak in the stressdisplacement curve are significantly affected by the normal stress.Strain localization bands emerged at both the tip of joints and the rock bridge,and their extension and interaction near the peak stress caused a surge in the AE hit rate and a significant decrease in the AE b value.Short and curvilinear strain bands were detected at low normal stress,while high normal stress generally led to more microcracking events and longer coplanar cracks at the rock bridge area.Furthermore,an increase in normal stress resulted in a higher AE count rate and more energetic AE events during friction sliding along the shearformed fault.It was observed that the elastic energy released during the crack coalescence at the prepeak stage was much greater than that released during friction sliding at the post-peak stage.More than 75%of AE events were located in the low-frequency band(0e100 kHz),and this proportion continued to rise with increasing normal stress.Moreover,more AE events of low AF value and high RA value were observed in specimens subjected to high normal stress,indicating that greater normal stress led to more microcracks of shear nature. 展开更多
关键词 shear band evolution Acoustic emission(AE) Crack coalescence Normal stress shear sliding
下载PDF
Failure transition of shear-to-dilation band of rock salt under triaxial stresses
2
作者 Jianfeng Liu Xiaosong Qiu +3 位作者 Jianxiong Yang Chao Liang Jingjing Dai Yu Bian 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期56-64,共9页
Great potential of underground gas/energy storage in salt caverns seems to be a promising solution to support renewable energy.In the underground storage method,the operating cycle unfortunately may reach up to daily ... Great potential of underground gas/energy storage in salt caverns seems to be a promising solution to support renewable energy.In the underground storage method,the operating cycle unfortunately may reach up to daily or even hourly,which generates complicated pressures on the salt cavern.Furthermore,the mechanical behavior of rock salt may change and present distinct failure characteristics under different stress states,which affects the performance of salt cavern during the time period of full service.To reproduce a similar loading condition on the cavern surrounding rock mass,the cyclic triaxial loading/unloading tests are performed on the rock salt to explore the mechanical transition behavior and failure characteristics under different confinement.Experimental results show that the rock salt samples pre-sent a diffused shear failure band with significant bulges at certain locations in low confining pressure conditions(e.g.5 MPa,10 MPa and 15 MPa),which is closely related to crystal misorientation and grain boundary sliding.Under the elevated confinement(e.g.20 MPa,30 MPa and 40 MPa),the dilation band dominates the failure mechanism,where the large-size halite crystals are crushed to be smaller size and new pores are developing.The failure transition mechanism revealed in the paper provides additional insight into the mechanical performance of salt caverns influenced by complicated stress states. 展开更多
关键词 Rock salt Cyclic mechanical loading shear band Dilation band Underground gas storage(UGS)
下载PDF
Monitoring shear deformation of sliding zone via fiber Bragg grating and particle image velocimetry
3
作者 Deyang Wang Honghu Zhu +3 位作者 Guyu Zhou Wenzhao Yu Baojun Wang Wanhuan Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期231-241,共11页
Monitoring shear deformation of sliding zones is of great significance for understanding the landslide evolution mechanism,in which fiber optic strain sensing has shown great potential.However,the cor-relation between... Monitoring shear deformation of sliding zones is of great significance for understanding the landslide evolution mechanism,in which fiber optic strain sensing has shown great potential.However,the cor-relation between strain measurements of quasi-distributed fiber Bragg grating(FBG)sensing arrays and shear displacements of surrounding soil remains elusive.In this study,a direct shear model test was conducted to simulate the shear deformation of sliding zones,in which the soil internal deformation was captured using FBG strain sensors and the soil surface deformation was measured by particle image velocimetry(PIV).The test results show that there were two main slip surfaces and two secondary ones,developing a spindle-shaped shear band in the soil.The formation of the shear band was successfully captured by FBG sensors.A sinusoidal model was proposed to describe the fiber optic cable deformation behavior.On this basis,the shear displacements and shear band widths were calculated by using strain measurements.This work provides important insight into the deduction of soil shear deformation using soil-embedded FBG strain sensors. 展开更多
关键词 LANDSLIDE shear band Fiber bragg grating(FBG) Particle image velocimetry(PIV) Sinusoidal model Strain‒displacement proportional COEFFICIENT
下载PDF
Adiabatic shear banding of hot-rolling Ti–6Al–4V alloy subjected to dynamic shearing and uniaxial dynamic compression 被引量:2
4
作者 Yu-Meng Luo Jin-Xu Liu +3 位作者 Xing-Wang Cheng Shu-Kui Li Fu-Chi Wang Wen-Wen Guo 《Rare Metals》 SCIE EI CAS CSCD 2015年第9期632-637,共6页
Effect of stress state including dynamic shearing and uniaxial dynamic compression on adiabatic shear banding(ASBing) of hot-rolling Ti–6Al–4V(TC4) alloy was investigated. The absorbed energy of specimen before fail... Effect of stress state including dynamic shearing and uniaxial dynamic compression on adiabatic shear banding(ASBing) of hot-rolling Ti–6Al–4V(TC4) alloy was investigated. The absorbed energy of specimen before failure was calculated to evaluate the susceptibility to adiabatic shear band(ASB) of TC4 alloy quantitatively.Results show that the susceptibility to ASB of hot-rolling TC4 alloy exhibits obvious anisotropy under both dynamic shearing and uniaxial dynamic compression conditions, but the anisotropy of susceptibility to ASB under dynamic shearing condition exhibits an opposite tendency with that under uniaxial dynamic compression condition. Under the condition of uniaxial dynamic compression, material shows the highest susceptibility to ASB when loaded along transverse direction(TD) of the hot-rolling TC4, while the lowest susceptibility when loaded along rolling direction(RD). However, under the condition of dynamic shearing,the material behaves in the opposite way, demonstrating the lowest susceptibility when loaded along TD of the hotrolling TC4, while the highest susceptibility when loaded along RD. 展开更多
关键词 Adiabatic shear banding Ti alloy Dynamic compressi
原文传递
Onset and Direction of Shear Banding Instability in Metallic Glasses
5
作者 Yan Chen Lanhong Dai 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2014年第6期616-621,共6页
The shear banding instability occurs as the homogenous deformation in metallic glasses (MGs) develops to a critical point, at which the discontinuity in deformation rate is incipient across nano-scale shear bands. W... The shear banding instability occurs as the homogenous deformation in metallic glasses (MGs) develops to a critical point, at which the discontinuity in deformation rate is incipient across nano-scale shear bands. When and where the shear instability takes place is an important issue for understanding the shear band origin. However, such condition and direction of shear localization concerning the unique properties of MGs is still lacking for general stress state. In this paper, a new constitutive is introduced for MGs accounting for the pressure sensitivity, dilatancy and structural evolution; the shear banding is regarded as the appearance of instability in the constitutive description of inelastic deformation. Tying the bifurcation theory to the new constitutive, the general condition of deformation localization is derived. The shear band orientation corresponding to the easiest direction of shear instability is then obtained in dependence on pressure sensitivity, dilatancy and Poisson's ratio for MGs. The range of the predicted shear band angles is consistent with the experimental observations. 展开更多
关键词 Metallic glasses shear banding instability BIFURCATION
原文传递
Extracting compressive stress-strain curve based on stick-slip shear banding process in bulk metallic glasses
6
作者 Jing Hu Yun-xuan Weng +1 位作者 Xiao-li Li Bao-an Sun 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2017年第4期372-377,共6页
Based on the stick-slip process,an effective method to extract the stress-strain curve directly from the crosshead displacement-load raw data in compression of bulk metallic glasses was proposed.The method was tested ... Based on the stick-slip process,an effective method to extract the stress-strain curve directly from the crosshead displacement-load raw data in compression of bulk metallic glasses was proposed.The method was tested in two bulk metallic glass samples with different plasticities and shear band morphologies.The extracted stress-strain curves were found to well resemble the stress-strain curve measured by a laser extensometer.In addition,the extracted curve could resolve fine structures of serrated flow much better than that measured by extensometer,thus facilitating the study of shear banding process.Results obtained by this method made the stick-slip dynamics of shear banding valid,and this method could be employed to obtain the real strain of small-sized metallic glass samples where extensometer cannot be applied. 展开更多
关键词 Serrated flow shear banding Stick-slip Stress-strain curve
原文传递
Influence of Shear Banding on the Formation of Brass-type Textures in Polycrystalline fcc Metals with Low Stacking Fault Energy 被引量:2
7
作者 Haile Yan Xiang Zhao +2 位作者 Nan Jia Yiran Zheng Tong He 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2014年第4期408-416,共9页
Texture evolution in nickel, copper and α-brass that are representative of face-centered-cubic (fcc) materials with different stacking fault energy (SFE) during cold rolling was systematically investigated. X-ray... Texture evolution in nickel, copper and α-brass that are representative of face-centered-cubic (fcc) materials with different stacking fault energy (SFE) during cold rolling was systematically investigated. X-ray diffraction, scanning electron microscopy and electron backscatter diffraction techniques were employed to characterize microstructures and local orientation distributions of specimens at different thickness reductions. Besides, Taylor and Schmid factors of the {111} 〈110〉 slip systems and {111} 〈112〉 twin systems for some typical orientations were utilized to explore the relationship between texture evolution and deformation microstructures. It was found that in fcc metals with low SFE at large deformations, the copper-oriented grains rotated around the 〈110〉 crystallographic axis through the brass-R orientation to the Goss orientation, and finally toward the brass orientation. The initiation of shear banding was the dominant mechanism for the above-mentioned texture transition. 展开更多
关键词 Face-centered-cubic ahoy TEXTURE ROLLING shear band
原文传递
Microstructural softening induced adiabatic shear banding in Ti-23Nb-0.7Ta-2Zr-O gum metal 被引量:2
8
作者 Silu Liu Y.Z.Guo +5 位作者 Z.L.Pan X.Z.Liao E.J.Lavernia Y.T.Zhu Q,M,Wei Yonghao Zhao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第19期31-39,共9页
Ti-23Nb-0.7Ta-2Zr-O gum metal(GM)is an attractive candidate material for applications that require superior mechanical properties.In our earlier investigation of the GM[1],geometrical softening and the generation of a... Ti-23Nb-0.7Ta-2Zr-O gum metal(GM)is an attractive candidate material for applications that require superior mechanical properties.In our earlier investigation of the GM[1],geometrical softening and the generation of adiabatic shear bands(ASBs)were proposed as primary reasons for the documented anisotropic impact response.In the present study,electron backscattered diffraction(EBSD)analysis reveals two different deformed microstructures,i.e.,deformed ultrafine grains(UFGs)and dynamically recrystallized UFGs,formed in the ASBs of GM samples processed by extrusion equal channel angular pressing(ECAP),respectively.Additional calculation of temperature rise during dynamic compression suggests that the above microstructure differences in the ASBs was originated from their different maximum ASB temperatures(608 K for extruded GM and 1159 K for ECAP-processed GM).Moreover,our calculation on the temperature at the onset of ASBs indicates that microstructural softening is the primary cause for the development of ASBs in both extruded GM(321 K)and ECAP-processed GM(331 K). 展开更多
关键词 Gum metal Split hopkinson bar Adiabatic shear band MICROSTRUCTURES
原文传递
Experimental and numerical study on the dynamic shear banding mechanism of HfNbZrTi high entropy alloy 被引量:1
9
作者 SONG Wei-Li MA Quan +8 位作者 ZENG QingLei ZHU ShengXin SUI MingBin CAO TangQing QI Wei CHEN YinQiang YU XiaoQi XUE YunFei CHEN Hao-Sen 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第8期1808-1818,共11页
High-entropy alloys(HEAs) have attracted considerable attention in recent years because of their unique mechanical properties.In this work, the mechanism of dynamic shear banding(also called adiabatic shear bands, ASB... High-entropy alloys(HEAs) have attracted considerable attention in recent years because of their unique mechanical properties.In this work, the mechanism of dynamic shear banding(also called adiabatic shear bands, ASBs) in a BCC HEA HfNbZrTi was investigated combining dynamic experiments and numerical simulations. The temperature evolution during dynamic shear banding, which has been believed to play a dominant role during ASB formation in the literature, was measured using high-speed infrared thermal detectors synchronized with a split Hopkinson pressure bar system. The dynamic mechanical behavior of the BCC HEA was described using the Johnson-Cook model accompanied by damage accumulation. The process of ASB formation,considering potential contributions from thermal softening and damage softening, was numerically investigated by controlling the activation of each softening mechanism separately. Based on the results of experimental observation and numerical analysis,dynamic shear banding in this BCC HEA is proposed to be dominated by damage softening, and thermal softening only plays a secondary role, which differs from the thermal-softening-dominated ASB formation in typical FCC HEAs such as the Cantor alloy. 展开更多
关键词 adiabatic shear band high entropy alloys damage softening thermal softening
原文传递
Shear banding-inducedslip enables unprecedented strength-ductility combination of laminated metallic composites
10
作者 Shuang Jiang Ru Lin Peng +9 位作者 Kristián Máthis Hai-Le Yan Gergely Farkas Zoltán Hegedues Ulrich Lienert Johan Moverare Xiang Zhao Liang Zuo Nan Jia Yan-Dong Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第15期260-268,共9页
Shear bands in metallic materials have been reported to be catastrophic because they normally lead to non-uniform plastic deformation. Ductility of laminated metallic composites deteriorates with increasing processing... Shear bands in metallic materials have been reported to be catastrophic because they normally lead to non-uniform plastic deformation. Ductility of laminated metallic composites deteriorates with increasing processing strain, particularly for those having hexagonal-close-packed(hcp) constituents due to inadequate slip systems and consequently prominent shear banding. Here, we propose a design strategy that counterintuitively tolerates the bands with localized strains, i.e. the shear banded laminar(SBL) structure, which promotes <c+a> dislocation activation in hcp metals and renders unprecedented strengthductility combination in hcp-metal-based composites fabricated by accumulative roll bonding(ARB). The SBL structure is characterized with one soft hcp metal constrained by adjacent hard metal in which dislocations have been accumulated near the bimetal interfaces. High-energy X-ray diffraction astonishingly reveals that more than 90% of dislocations are non-basal in Ti layers of the SBL Ti/Nb composite processed by eight ARB cycles. Moreover, <c+a> dislocations occupy a high fraction of ~30%, promoting further <c+a>cross slip. The unique stress field tailored by both shear banding and heterophase interface-mediated deformation accommodation triggers important <c+a> slip. This SBL design is of significance for developing hcp-based laminates and other heterostructured materials with high performances. 展开更多
关键词 shear band Laminated metallic composites DUCTILITY High-energy X-ray diffraction Dislocation slip
原文传递
Mesoscopic measurement of damage and shear bands of granite residual soil using Micro-CT and digital volume correlation
11
作者 LI Cheng-sheng ZHANG Bing-xin +2 位作者 LIU Zhi-jun KONG Ling-wei SHU Rong-jun 《Journal of Mountain Science》 SCIE CSCD 2023年第11期3423-3436,共14页
The mesomechanics of geotechnical materials are closely related to the macromechanical properties,especially the mesoscale evolution of shear bands,which is helpful for understanding the failure mechanism of geotechni... The mesomechanics of geotechnical materials are closely related to the macromechanical properties,especially the mesoscale evolution of shear bands,which is helpful for understanding the failure mechanism of geotechnical materials.However,there is lack of effective quantitative analysis method for the complex evolution mechanism of threedimensional shear bands.In this work,we used X-ray computed tomography(CT)to reconstruct volume images and used the digital volume correlation(DVC)method to calculate the three-dimensional strain fields of granite residual soil samples at different loading stages.The trend of the failure surface of the shear bands was obtained by the planar fitting method,and the connectivity index was constructed according to the projection characteristics of the shear bands on the failure trend surface.The results support the following findings:the connectivity index of the shear band increases rapidly and then slowly with increasing axial strain,which is characterized by a near'S'curve.As the stress reaches the peak value,the connectivity index of the shear bands almost exceeds 0.7.The contribution of the new shear band volume to the connectivity of the shear bands becomes increasingly small with increasing axial loading.Affected by quartz grains and stress at the initial stage,the dip angle gradually and finally approaches the included angle of the maximum shear stress from the discrete state with increasing axial loading.The tendency and dip angle of the resulting shear bands are dynamic,and the tendency slightly deflects with increasing loading. 展开更多
关键词 DAMAGE shear band Digital volume correlation MICRO-CT Granite residual soil
下载PDF
The primary influence of shear band evolution on the slope bearing capacity
12
作者 Lanting Wei Qiang Xu +1 位作者 Shanyong Wang Xu Ji 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第4期1023-1037,共15页
Slope bearing capacity is one of the most important characteristics in slope engineering and is strongly influenced by weak planes,loading conditions,and slope geometry.By presenting the evolution of slip surfaces,thi... Slope bearing capacity is one of the most important characteristics in slope engineering and is strongly influenced by weak planes,loading conditions,and slope geometry.By presenting the evolution of slip surfaces,this paper explored how the slope bearing capacity is affected by widely observed influencing factors.The initiation and propagation of slip surfaces are presented in laboratory model tests of slope using the transparent soil technique.Shear band evolution under various weak planes,loading conditions,and slope geometries were experimentally presented,and slope bearing capacities were analyzed with the process of shear band evolution.This paper verified that slip surface morphologies have a strong relation with the slope bearing capacity.The same slip surface morphology can have different evolutionary processes.In this case,it is the shear band evolution that determines the slope bearing capacity,not the morphology of the slip surface.The influencing factors such as pre-existing weak planes,loading conditions,and slope geometry strongly affect the slope bearing capacity as these factors govern the process of shear band evolution inside the slope. 展开更多
关键词 Slope bearing capacity shear band evolution Failure mechanism Transparent soil
下载PDF
A MODIFIED METHOD IN FINITE ELEMENT ANALYSIS WITH APPLICATION TO SIMPLE SHEARING 被引量:2
13
作者 Song Suncheng (Inner Mongolia Research Institute of Metals,014030,China)Huang Chenguang Duan Zhuping (LNM,Institute of Mechanics,Chinese Academy of Sciences,100080,China) 《Acta Mechanica Solida Sinica》 SCIE EI 1994年第4期285-291,共7页
A modified technique called compatible stress iterative procedure is proposed in finite element analysis,which has well improved the conventional weighted-residual method and was successful in dealing with the formati... A modified technique called compatible stress iterative procedure is proposed in finite element analysis,which has well improved the conventional weighted-residual method and was successful in dealing with the formation and localization process of shear banding. 展开更多
关键词 shear banding finite element analysis stress compatibility
下载PDF
Deformation, Phase Transformation and Recrystallization in the Shear Bands Induced by High-Strain Rate Loading in Titanium and Its Alloys 被引量:14
14
作者 Yongbo XU Yilong BAI M.A.Meyers 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第6期737-746,I0003,I0004,共12页
α-titanium and its alloys with a dual-phase structure (α+β) were deformed dynamically under strain rate of about 10^4 s^-1. The formation and microstructural evolution of the localized shear bands were character... α-titanium and its alloys with a dual-phase structure (α+β) were deformed dynamically under strain rate of about 10^4 s^-1. The formation and microstructural evolution of the localized shear bands were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results reveal that both the strain and strain rate should be considered simultaneously as the mechanical conditions for shear band formation, and twinning is an important mode of deformation. Both experimental and calculation show that the materials within the bands underwent a superhigh strain rate (9×10^5 S^-1) deformation, which is two magnitudes of that of average strain rate required for shear band formation; the dislocations in the bands can be constricted and developed into cell structures; the phase transformation from α to α2 within the bands was observed, and the transformation products (α2) had a certain crystallographic orientation relationship with their parent; the equiaxed grains with an average size of 10 μm in diameter observed within the bands are proposed to be the results of recrystallization. 展开更多
关键词 Localized shear bands Microstructure Dislocations TWINNING Phase transformation RECRYSTALLIZATION
下载PDF
Evolution of cracks in the shear bands of granite residual soil 被引量:4
15
作者 Chengsheng Li Lingwei Kong Ran An 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第6期1956-1966,共11页
The evolution of shear bands and cracks plays an important role in landslides.However,there is no systematic method for classification of the cracks,which can be used to analyze the evolution of cracks in shear bands.... The evolution of shear bands and cracks plays an important role in landslides.However,there is no systematic method for classification of the cracks,which can be used to analyze the evolution of cracks in shear bands.In this study,X-ray computed tomography(CT)is used to observe the behavior of granite residual soil during a triaxial shear process.Based on the digital volume correlation(DVC)method,a crack classification method is established according to the connectivity characteristics of cracks before and after loading.Cracks are then divided into six classes:obsolete,brand-new,isolated,split,combined,and compound.With evolution of the shear bands,a large number of brand-new cracks accelerate the damages of materials at the mesoscale,resulting in a sharp decrease in strength.The volume of brandnew cracks increases rapidly with increasing axial strain,and their volume is greater than 50%when the strain reaches 12%,while the volume of compound cracks decreases from 54%to 21%.As cracks are the weakest areas in a material,brand-new cracks accelerate the development of shear bands.Finally,the coupling effect of shear bands and cracks destroys the soil strength. 展开更多
关键词 shear band Crack classification method Digital volume correlation(DVC) X-ray computed tomography(CT) Granite residual soil
下载PDF
Adiabatic shear localization evolution for steel based on the Johnson-Cook model and gradient-dependent plasticity 被引量:3
16
作者 Xuebin Wang 《Journal of University of Science and Technology Beijing》 CSCD 2006年第4期313-318,共6页
Gradient-dependent plasticity is introduced into the phenomenological Johnson-Cook model to study the effects of strainhardening, strain rate sensitivity, thermal-softening, and microstructure. The microstructural eff... Gradient-dependent plasticity is introduced into the phenomenological Johnson-Cook model to study the effects of strainhardening, strain rate sensitivity, thermal-softening, and microstructure. The microstructural effect (interactions and interplay among microstructures) due to heterogeneity of texture plays an important role in the process of development or evolution of an adiabatic shear band with a certain thickness depending on the grain diameter. The distributed plastic shear strain and deformation in the shear band are derived and depend on the critical plastic shear strain corresponding to the peak flow shear stress, the coordinate or position, the internal length parameter, and the average plastic shear strain or the flow shear stress. The critical plastic shear strain, the distributed plastic shear strain, and deformation in the shear band are numerically predicted for a kind of steel deformed at a constant shear strain rate. Beyond the peak shear stress, the local plastic shear strain in the shear band is highly nonuniform and the local plastic shear deformation in the band is highly nonlinear. Shear localization is more apparent with the increase of the average plastic shear strain. The calculated distributions of the local plastic shear strain and deformation agree with the previous numerical and experimental results. 展开更多
关键词 adiabatic shear band STEEL STRAIN-HARDENING gradient-dependent plasticity Johnson-Cook model
下载PDF
Adiabatic Shear Bands in 30CrNi_3MoV Structural Steel Induced during High Speed Cutting 被引量:3
17
作者 Chunzheng DUAN and Minjie WANGKey Laboratory of Ministry of Education for Precision and Non-traditional Machining, School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第6期775-778,共4页
The width and spacing of adiabatic shear bands (ASBs) in the serrated chips generated during high speed orthogonal cutting of 30CrNi3MoV structurai steel were measured by opticai microscopy (OM), the temperature rise ... The width and spacing of adiabatic shear bands (ASBs) in the serrated chips generated during high speed orthogonal cutting of 30CrNi3MoV structurai steel were measured by opticai microscopy (OM), the temperature rise in the shear band was estimated. The microstructures of the ASBs were also characterized by SEM and TEM. The results show that the width and spacing of ASBs decrease with the increase of the cutting speed. The further observations show that the microstructure between the matrix and the center of the ASB gradually changes, and that the martensitic phase transformation, carbide precipitation and recrystallization may occur in the ASB. 展开更多
关键词 Adiabatic shear band (ASB) RECRYSTALLIZATION Orthogonal cutting
下载PDF
Adiabatic Shear Localization for Steels Based on Johnson-Cook Model and Second-and Fourth-Order Gradient Plasticity Models 被引量:2
18
作者 WANG Xue-bin 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2007年第5期56-61,共6页
To consider the effects of the interactions and interplay among microstructures, gradient-dependent models of second- and fourth-order are included in the widely used phenomenological Johnson-Cook model where the effe... To consider the effects of the interactions and interplay among microstructures, gradient-dependent models of second- and fourth-order are included in the widely used phenomenological Johnson-Cook model where the effects of strain-hardening, strain rate sensitivity, and thermal-softening are successfully described. The various parameters for 1006 steel, 4340 steel and S-7 tool steel are assigned. The distributions and evolutions of the local plastic shear strain and deformation in adiabatic shear band (ASB) are predicted. The calculated results of the second- and fourth- order gradient plasticity models are compared. S-7 tool steel possesses the steepest profile of local plastic shear strain in ASB, whereas 1006 steel has the least profile. The peak local plastic shear strain in ASB for S-7 tool steel is slightly higher than that for 4340 steel and is higher than that for 1006 steel. The extent of the nonlinear distribution of the local plastic shear deformation in ASB is more apparent for the S-7 tool steel, whereas it is the least apparent for 1006 steel. In fourth-order gradient plasticity model, the profile of the local plastic shear strain in the middle of ASB has a pronounced plateau whose width decreases with increasing average plastic shear strain, leading to a shrink of the portion of linear distribution of the profile of the local plastic shear deformation. When compared with the sec- ond-order gradient plasticity model, the fourth-order gradient plasticity model shows a lower peak local plastic shear strain in ASB and a higher magnitude of plastic shear deformation at the top or base of ASB, which is due to wider ASB. The present numerical results of the second- and fourth-order gradient plasticity models are consistent with the previous numerical and experimental results at least qualitatively. 展开更多
关键词 adiabatic shear band steel gradient-dependent plasticity Johnson-Cook model second-order gradient fourth-order gradient
下载PDF
Formation of adiabatic shearing band for high-strength Ti-5553 alloy:A dramatic thermoplastic microstructural evolution 被引量:2
19
作者 Dong-yang Qin Ying-gang Miao Yu-long Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第11期2045-2051,共7页
By using split Hopkinson pressure bar, optical microscopy and electronic microscopy, we investigate the influence of initial microstructures on the adiabatic shear behavior of high-strength Ti-5Al-5V-5Mo-3Cr(Ti-5553) ... By using split Hopkinson pressure bar, optical microscopy and electronic microscopy, we investigate the influence of initial microstructures on the adiabatic shear behavior of high-strength Ti-5Al-5V-5Mo-3Cr(Ti-5553) alloy with lamellar microstructure and bimodal microstructure. Lamellar alloy tends to form adiabatic shearing band(ASB) at low compression strain, while bimodal alloy is considerably ASBresistant. Comparing with the initial microstructure of Ti-5553 alloy, we find that the microstructure of the ASB changes dramatically. Adiabatic shear of lamellar Ti-5553 alloy not only results in the formation of recrystallized β nano-grains within the ASB, but also leads to the chemical redistribution of the alloying elements such as Al, V, Cr and Mo. As a result, the alloying elements distribute evenly in the ASB.In contrast, the dramatic adiabatic shear of bimodal alloy might give rise to the complete lamination of the globular primary a grain and the equiaxial prior β grain, which is accompanied by the dynamic recrystallization of a lamellae and β lamellae. As a result, ASB of bimodal alloy is composed of a/β nanomultilayers. Chemical redistribution does not occur in ASB of bimodal alloy. Bimodal Ti-5553 alloy should be a promising candidate for high performance armors with high mass efficiency due to the processes high dynamic flow stress and excellent ASB-resistance. 展开更多
关键词 Titanium alloys ARMOR High loading rate Adiabatic shearing band Dynamic phase transformation
下载PDF
DEFORMATION LOCALIZATION AND SHEAR BAND FRACTURE IN STRONG ANISOTROPY SHEET TENSION 被引量:1
20
作者 胡平 李大永 崔波 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1997年第2期143-152,共10页
The tensile deformation localization and the shear band fracture behaviors of sheet metals with strong anisotropy are numerically simulated by using Updating Lagrange finite element method, Quasi-how plastic constitut... The tensile deformation localization and the shear band fracture behaviors of sheet metals with strong anisotropy are numerically simulated by using Updating Lagrange finite element method, Quasi-how plastic constitutive theory([1]) and B-L planar anisotropy yield criterion([2]). Simulated results are compared with experimental ones. Very good consistence is obtained between numerical and experimental results. The relationship between the anisotropy coefficient R and the shear band angle theta is found. 展开更多
关键词 deformation localization and shear band fracture planar anisotropy sheet metal tension finite element method
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部