The timber-concrete composite(TCC)slabs have become a preferred choice of floor systems in modern multi story timber buildings.This TCC slab consisted of timber and a concrete slab which were commonly connected togeth...The timber-concrete composite(TCC)slabs have become a preferred choice of floor systems in modern multi story timber buildings.This TCC slab consisted of timber and a concrete slab which were commonly connected together with inclined self-tapping screws(STSs).To more accurately predict the fire performance of TCC slabs,the mechanical behavior of TCC connections under high temperature was investigated by numerical simulation in this study.The interface slip of TCC connections was simulated by a proposed Finite Element(FE)model at room temperature,and different diameter and penetration length screws were considered.The effectiveness of this FE model was validated by comparing with the existing experimental results.Furthermore,the sequentially coupling thermal stress analyses of this model were conducted,and the relationship between the reduction coefficient of connection performance and the effective penetration length of screws was summarized.This study gave the fit-ting expressions for the reduction coefficient of slip modulus and joint strength.Finally,the numerical investiga-tions of the fire performance of TCC slabs considering the char fall-off of Cross Laminated Timber(CLT)were performed to verify the effectiveness of the proposed reduction law.Comparing the fire-resistance time with experimental results showed deviation of the proposed model was−14.02%.展开更多
To study the seismic performance and load-transferring mechanism of an innovative precast shear wall(IPSW) involving vertical joints, an experimental investigation and theoretical analysis were successively conducted ...To study the seismic performance and load-transferring mechanism of an innovative precast shear wall(IPSW) involving vertical joints, an experimental investigation and theoretical analysis were successively conducted on two test walls. The test results confirm the feasibility of the novel joints as well as the favorable seismic performance of the walls, even though certain optimization measures should be taken to improve the ductility. The load-transferring mechanism subsequently is theoretically investigated based on the experimental study. The theoretical results show the load-transferring route of the novel joints is concise and definite. During the elastic stage, the vertical shear stress in the connecting steel frame(CSF) distributes uniformly; and each high-strength bolt(HSB)primarily delivers vertical shear force. However, the stress in the CSF redistributes when the walls develop into the elastic-plastic stage. At the ultimate state, the vertical shear stress and horizontal normal stress in the CSF distribute linearly; and the HSBs at both ends of the CSF transfer the maximum shear forces.展开更多
Cold-formed steel structures are steel structure products constructed from sheets or coils using cold rolling, press brake or bending brake method. These structures are extensively employed in building construction in...Cold-formed steel structures are steel structure products constructed from sheets or coils using cold rolling, press brake or bending brake method. These structures are extensively employed in building construction industry due to their light mass, ductility by economic cold forming operations, favorable strength-to-mass ratio and other factors. The utilization of cold formed steel sections with concrete as composite can hugely reduce the construction cost. However, the use of cold formed steel members in composite concrete beams has been very limited. A comprehensive review of developments in composite beam with cold formed steel sections was introduced. It was revealed that employing cold-formed steel channel section to replace reinforcement bars in conventional reinforced concrete beam results in a significant cost reduction without reducing strength capacity. The use of composite beam consisting of cold-formed steel open or close box and filled concrete could also reduce construction cost. Lighter composite girder for bridges with cold-formed steel of U section was introduced. Moreover, types of shear connectors to provide composite action between cold-formed steel beam and concrete slab were presented. However, further studies to investigate the effects of metal decking on the behavior of composite beam with cold-formed steel section and introduction of ductile shear connectors were recommended.展开更多
基金This study was funded by National Natural Science Foundation of China(Grant No.5187082769).
文摘The timber-concrete composite(TCC)slabs have become a preferred choice of floor systems in modern multi story timber buildings.This TCC slab consisted of timber and a concrete slab which were commonly connected together with inclined self-tapping screws(STSs).To more accurately predict the fire performance of TCC slabs,the mechanical behavior of TCC connections under high temperature was investigated by numerical simulation in this study.The interface slip of TCC connections was simulated by a proposed Finite Element(FE)model at room temperature,and different diameter and penetration length screws were considered.The effectiveness of this FE model was validated by comparing with the existing experimental results.Furthermore,the sequentially coupling thermal stress analyses of this model were conducted,and the relationship between the reduction coefficient of connection performance and the effective penetration length of screws was summarized.This study gave the fit-ting expressions for the reduction coefficient of slip modulus and joint strength.Finally,the numerical investiga-tions of the fire performance of TCC slabs considering the char fall-off of Cross Laminated Timber(CLT)were performed to verify the effectiveness of the proposed reduction law.Comparing the fire-resistance time with experimental results showed deviation of the proposed model was−14.02%.
基金Project(51078077)supported by the National Natural Science Foundation of China
文摘To study the seismic performance and load-transferring mechanism of an innovative precast shear wall(IPSW) involving vertical joints, an experimental investigation and theoretical analysis were successively conducted on two test walls. The test results confirm the feasibility of the novel joints as well as the favorable seismic performance of the walls, even though certain optimization measures should be taken to improve the ductility. The load-transferring mechanism subsequently is theoretically investigated based on the experimental study. The theoretical results show the load-transferring route of the novel joints is concise and definite. During the elastic stage, the vertical shear stress in the connecting steel frame(CSF) distributes uniformly; and each high-strength bolt(HSB)primarily delivers vertical shear force. However, the stress in the CSF redistributes when the walls develop into the elastic-plastic stage. At the ultimate state, the vertical shear stress and horizontal normal stress in the CSF distribute linearly; and the HSBs at both ends of the CSF transfer the maximum shear forces.
文摘Cold-formed steel structures are steel structure products constructed from sheets or coils using cold rolling, press brake or bending brake method. These structures are extensively employed in building construction industry due to their light mass, ductility by economic cold forming operations, favorable strength-to-mass ratio and other factors. The utilization of cold formed steel sections with concrete as composite can hugely reduce the construction cost. However, the use of cold formed steel members in composite concrete beams has been very limited. A comprehensive review of developments in composite beam with cold formed steel sections was introduced. It was revealed that employing cold-formed steel channel section to replace reinforcement bars in conventional reinforced concrete beam results in a significant cost reduction without reducing strength capacity. The use of composite beam consisting of cold-formed steel open or close box and filled concrete could also reduce construction cost. Lighter composite girder for bridges with cold-formed steel of U section was introduced. Moreover, types of shear connectors to provide composite action between cold-formed steel beam and concrete slab were presented. However, further studies to investigate the effects of metal decking on the behavior of composite beam with cold-formed steel section and introduction of ductile shear connectors were recommended.