Whereas loess-mudstone landslides are widely distributed and frequently occurred at the loess Plateau,this type of landslides is hard to detect due to its particularity,and easily generates serious losses.To clarify t...Whereas loess-mudstone landslides are widely distributed and frequently occurred at the loess Plateau,this type of landslides is hard to detect due to its particularity,and easily generates serious losses.To clarify the shear characteristics and formation mechanism of loess-mudstone landslides,field investigations,ring shear tests and numerical simulation analyses were performed on the loess specimens collected from the Dingjiagou landslide in Yan’an city,China.The test results showed that both the peak strength and residual strength of slip zone soils have a decreasing tendency with moisture content,while the increasing of normal stress caused an increase in the shear strength.These phenomena indicate that the rise in the moisture content induced by precipitation or the decreasing of normal stress due to excavation activities would result in the weakening of slip zone soils.Numerical simulations of the evolution process of slope failure using the finite element method were conducted based on the Mohr–Coulomb criterion.It was found that the heavy precipitation played a more important role in the slope instability compared with the excavation.In addition,the field investigation showed that loess soils with well-developed cracks and underlying mudstone soils provide material base for the formation of loess-mudstone landslides.Finally,the formation mechanism of this type of landslides was divided into three stages,namely,the local deformation stage,the penetration stage,the creeping-sliding stage.This study may provide a basis for understanding the sliding process of loess-mudstone landslides,as well as guidelines for the prevention and mitigation of loess-mudstone landslides.展开更多
In this paper, the motion and acceleration process, as well as the mechanism of a high speed and long run landslide are investigated by adopting high speed ring shear test and taking the landslide occurred at Yigong R...In this paper, the motion and acceleration process, as well as the mechanism of a high speed and long run landslide are investigated by adopting high speed ring shear test and taking the landslide occurred at Yigong River in Bomi, Tibet on April 9, 2000 as the background. According to the motion characteristics of high-speed and long distance motion landside, the mechanism is studied under different conditions such as shear speed, consolidated drained and consolidated undrained status. Results show that high speed shearing process hinders and delays the dissipation of pore pressure, and drives pore water migrating to shear zone slowly. Both of water content and fine particle content at shear zone are obviously higher than those in other layers; and soil liquefaction occurs at shear zone in the saturated consolidated undrained ring shear tests. The effective internal friction angle of the consolidated undrained soil is much lower than that of the consolidated drained soil under ring shearing. The results also indicate that the shearing speed affecting the strength of soil to some extent. The higher the ring shearing speed is, the lower the strength of soil is. This investigation provides a preliminary interpretation of the mechanism of the motion and acceleration process of the Yigong landslide, occurred in Tibet in 2000.展开更多
In this study,a new numerical model of ring shear tester for shear band soil of landslide was established.The special feature of this model is that it considers the mechanism of friction-induced thermal pressurization...In this study,a new numerical model of ring shear tester for shear band soil of landslide was established.The special feature of this model is that it considers the mechanism of friction-induced thermal pressurization,which is potentially an important cause of high-speed catastrophic landslides.The key to the construction of this numerical ring shear model is to realize the THM(thermo-hydro-mechanical)dynamic coupling of soil particles,which includes the processes of frictional heating,thermal pressurization,and strength softening during shearing of solid particles.All of these are completed by using discrete element method.Based on this new model,the characteristics of shear stress change with shear displacement,as well as the variation of temperature and pore pressure in the specimen,are studied at shear rates of 0.055 m/s,0.06 m/s,0.109 m/s and 1.09 m/s,respectively.The results show that the peak strength and residual strength of specimen are significantly reduced when the mechanism of frictioninduced thermal pressurization is considered.The greater the shear rate is,the higher the temperature as well as the pore pressure is.The effect of shear rate on the shear strength is bidirectional.The simulation results demonstrate that this model can effectively simulate the mechanism of friction-induced thermal pressurization of shear band soil during ring shear process,and the shear strength softening in the process.The new numerical ring shear model established in this study is of great significance for studying the dynamic mechanism of high-speed catastrophic landslides.展开更多
This paper discusses the shortcomings of the traditional Coulomb shear criterion and the direct shear-box testing method used for clayey soil and presents a modified shear criterion that considers the elasto-plastic b...This paper discusses the shortcomings of the traditional Coulomb shear criterion and the direct shear-box testing method used for clayey soil and presents a modified shear criterion that considers the elasto-plastic behavior of cohesive soil. This modified approach involves direct shear testing under constant volume, a method that has been developed by the author. A modified ring shear apparatus and the theory behind the shear criterion and its implication for slope stability analysis are then discussed and the results of investigated tuffitic clayey sediments are presented. The results show that the presented new shear criterion does not consider the cohesion as material constant, but rather it depends on the void ratio. In this case, the stress state and the consolidation status and thus the elasto-plastic behavior of the clayey soil are considered.展开更多
Deformation of a simple single piezoelectric actuator is usually quite small.A ring-shaped piezoelectric actuator with large piezoelectrically generated displacement was proposed.The thickness of the actuator was1 mm,...Deformation of a simple single piezoelectric actuator is usually quite small.A ring-shaped piezoelectric actuator with large piezoelectrically generated displacement was proposed.The thickness of the actuator was1 mm,and the inner and outer diameters were 4 mm and 40 mm,respectively.The ring-shaped actuator was made of BiScO_3-PbTiO_3(BS-PT)ceramic and polarized in radial direction.An electric field was applied to thickness direction and a large shear-bending deformation emerged.Then Rayleigh-Ritz method and Bessel functions were adopted to analyze the shear-bending deformation.Results show that under an electric field of 7.5kV/cm,the maximum displacement at the inner edge of the actuator reached 5.07μm,which agreed well with the corresponding experimental results.展开更多
A calamitous landslide happened at 22:00 on September 1,2014 in the Yunyang area of Chongqing City,southwest China,enforcing the evacuation of 508 people and damaging 23 buildings.The landslide volume comprised 1.44 m...A calamitous landslide happened at 22:00 on September 1,2014 in the Yunyang area of Chongqing City,southwest China,enforcing the evacuation of 508 people and damaging 23 buildings.The landslide volume comprised 1.44 million m^(3) of material in the source area and 0.4 million m^(3) of shoveled material.The debris flow runout extended 400 m vertically and 1600 m horizontally.The Xianchi reservoir landslide event has been investigated as follows:(1)samples collected from the main body of landslide were carried out using GCTS ring shear apparatus;(2)the parameters of shear and pore water pressure have been measured;and(3)the post-failure characteristics of landslide have been analyzed using the numerical simulation method.The excess pore-water pressure and erosion in the motion path are considered to be the key reasons for the long-runout motion and the scale-up of landslides,such as that at Xianchi,were caused by the heavy rainfall.The aim of this paper is to acquired numerical parameters and the basic resistance model,which is beneficial to improve simulation accuracy for hazard assessment for similar to potentially dangerous hillslopes in China and elsewhere.展开更多
基金supported by the National Natural Science Foundation of China(No.41902268)the China Postdoctoral Science Foundation(No.2019T120871)。
文摘Whereas loess-mudstone landslides are widely distributed and frequently occurred at the loess Plateau,this type of landslides is hard to detect due to its particularity,and easily generates serious losses.To clarify the shear characteristics and formation mechanism of loess-mudstone landslides,field investigations,ring shear tests and numerical simulation analyses were performed on the loess specimens collected from the Dingjiagou landslide in Yan’an city,China.The test results showed that both the peak strength and residual strength of slip zone soils have a decreasing tendency with moisture content,while the increasing of normal stress caused an increase in the shear strength.These phenomena indicate that the rise in the moisture content induced by precipitation or the decreasing of normal stress due to excavation activities would result in the weakening of slip zone soils.Numerical simulations of the evolution process of slope failure using the finite element method were conducted based on the Mohr–Coulomb criterion.It was found that the heavy precipitation played a more important role in the slope instability compared with the excavation.In addition,the field investigation showed that loess soils with well-developed cracks and underlying mudstone soils provide material base for the formation of loess-mudstone landslides.Finally,the formation mechanism of this type of landslides was divided into three stages,namely,the local deformation stage,the penetration stage,the creeping-sliding stage.This study may provide a basis for understanding the sliding process of loess-mudstone landslides,as well as guidelines for the prevention and mitigation of loess-mudstone landslides.
基金financial aided by the National Basic Research Program of China (2012CB026103)the National Natural Science Foundation of China (Grant Nos. 41172283, 41372313)
文摘In this paper, the motion and acceleration process, as well as the mechanism of a high speed and long run landslide are investigated by adopting high speed ring shear test and taking the landslide occurred at Yigong River in Bomi, Tibet on April 9, 2000 as the background. According to the motion characteristics of high-speed and long distance motion landside, the mechanism is studied under different conditions such as shear speed, consolidated drained and consolidated undrained status. Results show that high speed shearing process hinders and delays the dissipation of pore pressure, and drives pore water migrating to shear zone slowly. Both of water content and fine particle content at shear zone are obviously higher than those in other layers; and soil liquefaction occurs at shear zone in the saturated consolidated undrained ring shear tests. The effective internal friction angle of the consolidated undrained soil is much lower than that of the consolidated drained soil under ring shearing. The results also indicate that the shearing speed affecting the strength of soil to some extent. The higher the ring shearing speed is, the lower the strength of soil is. This investigation provides a preliminary interpretation of the mechanism of the motion and acceleration process of the Yigong landslide, occurred in Tibet in 2000.
基金financed by the Research Foundation of Key Laboratory of Geological Hazards on Three Gorges Reservoir Area(China Three Gorges University),Ministry of Education(Grant No.2020KDZ05)the National Natural Science Foundation of China(Grant Nos.42077239,41702378)。
文摘In this study,a new numerical model of ring shear tester for shear band soil of landslide was established.The special feature of this model is that it considers the mechanism of friction-induced thermal pressurization,which is potentially an important cause of high-speed catastrophic landslides.The key to the construction of this numerical ring shear model is to realize the THM(thermo-hydro-mechanical)dynamic coupling of soil particles,which includes the processes of frictional heating,thermal pressurization,and strength softening during shearing of solid particles.All of these are completed by using discrete element method.Based on this new model,the characteristics of shear stress change with shear displacement,as well as the variation of temperature and pore pressure in the specimen,are studied at shear rates of 0.055 m/s,0.06 m/s,0.109 m/s and 1.09 m/s,respectively.The results show that the peak strength and residual strength of specimen are significantly reduced when the mechanism of frictioninduced thermal pressurization is considered.The greater the shear rate is,the higher the temperature as well as the pore pressure is.The effect of shear rate on the shear strength is bidirectional.The simulation results demonstrate that this model can effectively simulate the mechanism of friction-induced thermal pressurization of shear band soil during ring shear process,and the shear strength softening in the process.The new numerical ring shear model established in this study is of great significance for studying the dynamic mechanism of high-speed catastrophic landslides.
文摘This paper discusses the shortcomings of the traditional Coulomb shear criterion and the direct shear-box testing method used for clayey soil and presents a modified shear criterion that considers the elasto-plastic behavior of cohesive soil. This modified approach involves direct shear testing under constant volume, a method that has been developed by the author. A modified ring shear apparatus and the theory behind the shear criterion and its implication for slope stability analysis are then discussed and the results of investigated tuffitic clayey sediments are presented. The results show that the presented new shear criterion does not consider the cohesion as material constant, but rather it depends on the void ratio. In this case, the stress state and the consolidation status and thus the elasto-plastic behavior of the clayey soil are considered.
基金supported by the National Natural Science Foundation of China(No.11172138)
文摘Deformation of a simple single piezoelectric actuator is usually quite small.A ring-shaped piezoelectric actuator with large piezoelectrically generated displacement was proposed.The thickness of the actuator was1 mm,and the inner and outer diameters were 4 mm and 40 mm,respectively.The ring-shaped actuator was made of BiScO_3-PbTiO_3(BS-PT)ceramic and polarized in radial direction.An electric field was applied to thickness direction and a large shear-bending deformation emerged.Then Rayleigh-Ritz method and Bessel functions were adopted to analyze the shear-bending deformation.Results show that under an electric field of 7.5kV/cm,the maximum displacement at the inner edge of the actuator reached 5.07μm,which agreed well with the corresponding experimental results.
基金supported by the China Geological Survey Project(Grant No.DD20211314)the Fundamental Research Funds for Chinese Academy of Geological Science(No.JKY202122).
文摘A calamitous landslide happened at 22:00 on September 1,2014 in the Yunyang area of Chongqing City,southwest China,enforcing the evacuation of 508 people and damaging 23 buildings.The landslide volume comprised 1.44 million m^(3) of material in the source area and 0.4 million m^(3) of shoveled material.The debris flow runout extended 400 m vertically and 1600 m horizontally.The Xianchi reservoir landslide event has been investigated as follows:(1)samples collected from the main body of landslide were carried out using GCTS ring shear apparatus;(2)the parameters of shear and pore water pressure have been measured;and(3)the post-failure characteristics of landslide have been analyzed using the numerical simulation method.The excess pore-water pressure and erosion in the motion path are considered to be the key reasons for the long-runout motion and the scale-up of landslides,such as that at Xianchi,were caused by the heavy rainfall.The aim of this paper is to acquired numerical parameters and the basic resistance model,which is beneficial to improve simulation accuracy for hazard assessment for similar to potentially dangerous hillslopes in China and elsewhere.