The simple-shear condition is closer to reality than the direct-shear condition for simulating the mechanical behavior of vegetated soil slope under shallow failure.However,study on simple-shear characteristics for ve...The simple-shear condition is closer to reality than the direct-shear condition for simulating the mechanical behavior of vegetated soil slope under shallow failure.However,study on simple-shear characteristics for vegetated slope is still insufficient,and there lacks intuitive comparison of characteristics between these two shear conditions.In this study,large-scale simple-shear and direct-shear experiments were conducted on soil permeated by roots of Amorpha fruticosa to investigate the shear strength and stiffness.The stress-displacement relationship of each sample was obtained and further normalized to unify the influence of root content.The results reveal that the direct-shear condition overestimates the shear strength of root-permeated soils(by 41%)and thus the estimation of slope stability based on the parameters of direct-shear condition is not conservative.Furthermore,the initial stiffness of root-permeated soil under simple-shear condition is 34%lower than that under direct-shear condition.The higher strength and stiffness under direct-shear condition are caused by the following reasons:the shear plane does not have the lowest strength,the shear area is decreasing,and the shear zone is thinner.The significant deformation(lower stiffness)revealed by the simple-shear condition facilitates the application of early warning for vegetated shallow landslides.展开更多
The characterization of ultra-soft clayey soil exhibits extreme challenges due to low shear strength of such material.Hence,inspecting the non-destructive electrical impedance behavior of untreated and treated ultra-s...The characterization of ultra-soft clayey soil exhibits extreme challenges due to low shear strength of such material.Hence,inspecting the non-destructive electrical impedance behavior of untreated and treated ultra-soft clayey soils gains more attention.Both shear strength and electrical impedance were measured experimentally for both untreated and treated ultra-soft clayey soils.The shear strength of untreated ultra-soft clayey soil reached 0.17 kPa for 10% bentonite content,while the shear strengths increased to 0.27 kPa and 6.7 kPa for 10% bentonite content treated with 2% lime and 10% polymer,respectively.The electrical impedance of the ultra-soft clayey soil has shown a significant decrease from 1.6 kΩ to 0.607 kΩ when the bentonite content increased from 2% to 10% at a frequency of 300 kHz.The10%lime and 10% polymer treatments have decreased the electrical impedances of ultra-soft clayey soil with 10%bentonite from 0.607 kΩ to 0.12 kΩ and 0.176 kΩ,respectively,at a frequency of 300 kHz.A new mathematical model has been accordingly proposed to model the non-destructive electrical impedancefrequency relationship for both untreated and treated ultra-soft clayey soils.The new model has shown a good agreement with experimental data with coefficient of determination(R;)up to 0.99 and root mean square error(RMSE) of 0.007 kΩ.展开更多
基金the financial supports from the National Natural Science Foundation of China(Grant No.41925030 and 4179043)the Second Tibetan Plateau Scientific Expedition and Research Program(STEP,Grant No.2019QZKK0904)the Natural Science Foundation of Shaanxi Province(2020JQ-041)。
文摘The simple-shear condition is closer to reality than the direct-shear condition for simulating the mechanical behavior of vegetated soil slope under shallow failure.However,study on simple-shear characteristics for vegetated slope is still insufficient,and there lacks intuitive comparison of characteristics between these two shear conditions.In this study,large-scale simple-shear and direct-shear experiments were conducted on soil permeated by roots of Amorpha fruticosa to investigate the shear strength and stiffness.The stress-displacement relationship of each sample was obtained and further normalized to unify the influence of root content.The results reveal that the direct-shear condition overestimates the shear strength of root-permeated soils(by 41%)and thus the estimation of slope stability based on the parameters of direct-shear condition is not conservative.Furthermore,the initial stiffness of root-permeated soil under simple-shear condition is 34%lower than that under direct-shear condition.The higher strength and stiffness under direct-shear condition are caused by the following reasons:the shear plane does not have the lowest strength,the shear area is decreasing,and the shear zone is thinner.The significant deformation(lower stiffness)revealed by the simple-shear condition facilitates the application of early warning for vegetated shallow landslides.
基金supported by the Center for Innovative Grouting Materials and Technology (CIGMAT) at the University of Houston, Texas, USA
文摘The characterization of ultra-soft clayey soil exhibits extreme challenges due to low shear strength of such material.Hence,inspecting the non-destructive electrical impedance behavior of untreated and treated ultra-soft clayey soils gains more attention.Both shear strength and electrical impedance were measured experimentally for both untreated and treated ultra-soft clayey soils.The shear strength of untreated ultra-soft clayey soil reached 0.17 kPa for 10% bentonite content,while the shear strengths increased to 0.27 kPa and 6.7 kPa for 10% bentonite content treated with 2% lime and 10% polymer,respectively.The electrical impedance of the ultra-soft clayey soil has shown a significant decrease from 1.6 kΩ to 0.607 kΩ when the bentonite content increased from 2% to 10% at a frequency of 300 kHz.The10%lime and 10% polymer treatments have decreased the electrical impedances of ultra-soft clayey soil with 10%bentonite from 0.607 kΩ to 0.12 kΩ and 0.176 kΩ,respectively,at a frequency of 300 kHz.A new mathematical model has been accordingly proposed to model the non-destructive electrical impedancefrequency relationship for both untreated and treated ultra-soft clayey soils.The new model has shown a good agreement with experimental data with coefficient of determination(R;)up to 0.99 and root mean square error(RMSE) of 0.007 kΩ.