期刊文献+
共找到2,883篇文章
< 1 2 145 >
每页显示 20 50 100
Mesomechanics Finite-element Method for Determining the Shear Strength of Mudded Intercalation Materials 被引量:2
1
作者 胡启军 SHI Rendan +3 位作者 YANG Xiaoqiang CAI Qijie HE Tianjun HE Leping 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第2期289-291,共3页
A new method regarding mesomechanics finite-element research is proposed to predict the peak shear strength of mudded intercalation materials on a mesoscopic scale. Based on geometric and mechanical parameters, along ... A new method regarding mesomechanics finite-element research is proposed to predict the peak shear strength of mudded intercalation materials on a mesoscopic scale. Based on geometric and mechanical parameters, along with the strain failure criteria obtained by sample's deformation characteristics, uniaxial compression tests on the sample were simulated through a finite-element model, which yielded values consistent with the data from the laboratory uniaxial compression tests, implying that the method is reasonable. Based on this model, a shear test was performed to calculate the peak shear strength of the mudded intercalation, consistent with values reported in the literature, thereby providing a new approach for investigating the mechanical properties of mudded intercalation materials. 展开更多
关键词 mudded intercalation mesomechanics finite-element method mesoscale structure shear strength
下载PDF
Finite Element Analysis of the Influence of Artificial Cementation on the Strength Parameters and Bearing Capacity of Sandy Soil under a Strip Footing
2
作者 Mohammad T. Alkhamis Abdulla AL-Rashidi 《Open Journal of Civil Engineering》 2023年第2期221-236,共16页
Artificial cementation is a method commonly used to enhance and improve soil properties. This paper investigates the effect of using different amounts of cement on soil strength parameters and soil bearing capacity, u... Artificial cementation is a method commonly used to enhance and improve soil properties. This paper investigates the effect of using different amounts of cement on soil strength parameters and soil bearing capacity, using the finite element method. Experimental tests are conducted on soil samples with different amounts of Portland cement. A 2-D numerical model is created and validated using the numerical modelling software, COMSOL Multiphysics 5.6 software. The study finds that the cohesion, and the angle of the internal friction of the soil samples increase significantly as a result of adding 1%, 2%, and 4% of Portland cement. The results demonstrate that the stresses and strain under the strip footing proposed decrease by 3.24% and 7.42%. Moreover, the maximum displacement also decreases by 1.47% and 2.97%, as a result of adding cements of 2% and 4%. The bearing capacity values obtained are therefore excellent, especially when using the 2% and 4% cement. The increase identified is due to the increased values of the bearing capacity factors. It is concluded that from an economic viewpoint, using 2% cement is the best option. 展开更多
关键词 Artificial Cementation strength Parameters Bearing Capacity finite element method Strip Footing
下载PDF
Strength reduction and step-loading finite element approaches in geotechnical engineering 被引量:23
3
作者 Yingren Zheng Xiaosong Tang +2 位作者 Shangyi Zhao Chujian Deng Wenjie Lei 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2009年第1期21-30,共10页
The finite element limit analysis method has the advantages of both numerical and traditional limit equilibrium techniques and it is particularly useful to geotechnical engineering.This method has been developed in Ch... The finite element limit analysis method has the advantages of both numerical and traditional limit equilibrium techniques and it is particularly useful to geotechnical engineering.This method has been developed in China,following well-accepted international procedures,to enhance understanding of stability issues in a number of geotechnical settings.Great advancements have been made in basic theory,the improvement of computational precision,and the broadening of practical applications.This paper presents the results of research on(1) the efficient design of embedded anti-slide piles,(2) the stability analysis of reservoir slopes with strength reduction theory,and(3) the determination of the ultimate bearing capacity of foundations using step-loading FEM(overloading).These three applications are evidence of the design improvements and benefits made possible in geotechnical engineering by finite element modeling. 展开更多
关键词 finite element limit analysis method strength reduction step-loading embedded anti-slide piles reservoir slope FOUNDATION
下载PDF
APPLICATION OF STOCHASTIC FINITE ELEMENT METHOD TO STRENGTH AND STABILITY ANALYSIS OF EARTH DAMS
4
作者 Yongjian, Ren Guoqing, Wang +1 位作者 Derong, Wei Jizhong, Shi 《Acta Mechanica Solida Sinica》 SCIE EI 1994年第1期80-86,共7页
This paper applies the stochastic finite element method to analyse the statistics of stresses in earth dams and assess the safety and reliability of the dams. Formulations of the stochastic finite element method are b... This paper applies the stochastic finite element method to analyse the statistics of stresses in earth dams and assess the safety and reliability of the dams. Formulations of the stochastic finite element method are briefly reviewed and the procedure for assessing dam's strength and stability is described. As an example, a detailed analysis for an actual dam Nululin dam is performed. A practical method for studying built-dams based on the prototype observation data is described. 展开更多
关键词 Accident prevention Failure (mechanical) finite element method Random processes RELIABILITY Stability STATISTICS strength of materials Stress analysis Structural analysis Water levels
下载PDF
New method of designing anti-slide piles——the strength reduction FEM 被引量:3
5
作者 Zheng Yingren Zhao Shanyi +1 位作者 Lei Wenjie Tang Xiaosong 《Engineering Sciences》 EI 2010年第3期2-11,共10页
At present,the thrust of an anti-slide pile can be worked out with some calculation methods. However,the resistance in front of the pile,the distributions of resistance and thrust,and appropriate pile length cannot be... At present,the thrust of an anti-slide pile can be worked out with some calculation methods. However,the resistance in front of the pile,the distributions of resistance and thrust,and appropriate pile length cannot be easily obtained. In this paper,the authors applied the strength-reduction finite element method (FEM) to several design cases of anti-slide piles. Using this method,it is possible to take the pile-soil interactions into consideration,obtain reasonable resistance in front of pile and the distributions of thrust and resistance,and reasonable lengths of anti-slide piles. In particular,the thrust and resistance imposed on embedded anti-slide piles can be calculated and composite anti-slide pile structures such as anchored piles and braced piles can be optimized. It is proved through the calculation examples that this method is more reliable and economical in the design of anti-slide pile. 展开更多
关键词 strength reduction method finite element method anti-slide piles sub-grade reaction embedded piles
下载PDF
Analysis of Biomechanical Behaviour of Anterior Teeth Using Two Different Methods: Finite Element Method and Experimental Tests 被引量:3
6
作者 Laura M. Bessone Enrique Fernández Bodereau +1 位作者 Gabriela Cabanillas Alejandro Dominguez 《Engineering(科研)》 2014年第3期148-158,共11页
The main objective of this study was to compare the results obtained with both virtual and experimental research methods, when the biomechanical behavior of teeth restored with esthetic posts was investigated. The fin... The main objective of this study was to compare the results obtained with both virtual and experimental research methods, when the biomechanical behavior of teeth restored with esthetic posts was investigated. The finite element method was used to develop models of healthy maxillary canines and maxillary canines restored with definitive crowns and glass-fiber posts, quartzfiber posts, and titanium posts. Stress distribution was observed when external loads were applied. Load was applied in-vitro to analyse the fracture resistance of 48 maxillary canines restored in the same way as it was considered in the virtual method. The analysis of results using the finite element method led to the conclusion that restored teeth, in which the elastic modulus of the post was similar to that of the dentine and the material of the core had the best biomechanical performance. The experimental study validated the virtual analysis. 展开更多
关键词 COMPRESSIVE strength Glass FIBER POSTS QUARTZ FIBER POSTS finite element method
下载PDF
A Finite Element Analysis on Static Strength of a Complex Section
7
作者 隋欣 方蜀州 张平 《Defence Technology(防务技术)》 SCIE EI CAS 2006年第4期272-275,共4页
A static finite element analysis (FEA) of an impulsive controller section is presented. The boundary condition and a part of the loads are applied. Considering the grades of the stress around the holes being large, th... A static finite element analysis (FEA) of an impulsive controller section is presented. The boundary condition and a part of the loads are applied. Considering the grades of the stress around the holes being large, the dense grids are adjusted accordingly. Four cases with different loads are compared, thus the influences of different loads on the section are analyzed. Numerical results show that the maximum stress of the section is lower than the strength limit of the material, and the section will not be broken with the static loads. 展开更多
关键词 导弹 复合舱段 静应力 有限元分析
下载PDF
Rigorous back analysis of shear strength parameters of landslide slip 被引量:6
8
作者 张科 曹平 保瑞 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第5期1459-1464,共6页
A rigorous back analysis of shear strength parameters of landslide slip was presented. Kinematical element method was adopted to determine factor of safety and critical failure surface, which overcomes the disadvantag... A rigorous back analysis of shear strength parameters of landslide slip was presented. Kinematical element method was adopted to determine factor of safety and critical failure surface, which overcomes the disadvantage of limit equilibrium method. The theoretical relationship between the combination of shear strength parameters and stability state was studied. The results show that the location of critical slip surface, F/tan f and F/c depend only on the value of c/tan f. The failure surface moves towards the inside of slope as c/tan f increases. According to the information involving factor of safety and critical failure surface in a specific cross-section, strength parameters can be back calculated based on the above findings. Three examples were given for demonstrating the validity of the present method. The shear strength parameters obtained by back analysis are almost consistent with their correct solutions or test results. 展开更多
关键词 slope stability back analysis kinematical element method shear strength parameter critical failure surface
下载PDF
Modeling Technology in Finite Element Analysis of Electrostatic Proximity Fuze Problem 被引量:2
9
作者 李银林 施聚生 《Journal of Beijing Institute of Technology》 EI CAS 2000年第3期286-290,共5页
In order to analyze the electrostatic field concerned with electrostatic proximity fuze problem using the available finite analysis software package, the technology to model the problem with a scale reduction object a... In order to analyze the electrostatic field concerned with electrostatic proximity fuze problem using the available finite analysis software package, the technology to model the problem with a scale reduction object and boundary was presented. The boundary is determined by the maximum distance the sensor can detect. The object model is obtained by multiplying the terms in Poisson's equation with a scale reduction factor and the real value can be reconstructed with the same reverse process after software calculation. Using the finite element analysis program, the simulation value is close to the theoretical value with a little error. The boundary determination and scale reduction method is suitable to modeling the irregular electrostatic field around air targets, such as airplane, missile and so on, which is based on commonly used personal computer (PC). The technology reduces the calculation and storage cost greatly. 展开更多
关键词 electrostatic proximity fuze finite element analysis boundary condition scale reduction method
下载PDF
Finite element analyses of slope stability problems using non-associated plasticity 被引量:10
10
作者 Simon Oberhollenzer Franz Tschuchnigg Helmut F.Schweiger 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第6期1091-1101,共11页
In recent years, finite element analyses have increasingly been utilized for slope stability problems. In comparison to limit equilibrium methods, numerical analyses do not require any definition of the failure mechan... In recent years, finite element analyses have increasingly been utilized for slope stability problems. In comparison to limit equilibrium methods, numerical analyses do not require any definition of the failure mechanism a priori and enable the determination of the safety level more accurately. The paper compares the performances of strength reduction finite element analysis(SRFEA) with finite element limit analysis(FELA), whereby the focus is related to non-associated plasticity. Displacement-based finite element analyses using a strength reduction technique suffer from numerical instabilities when using non-associated plasticity, especially when dealing with high friction angles but moderate dilatancy angles. The FELA on the other hand provides rigorous upper and lower bounds of the factor of safety(FoS) but is restricted to associated flow rules. Suggestions to overcome this problem, proposed by Davis(1968), lead to conservative FoSs; therefore, an enhanced procedure has been investigated. When using the modified approach, both the SRFEA and the FELA provide very similar results. Further studies highlight the advantages of using an adaptive mesh refinement to determine FoSs. Additionally, it is shown that the initial stress field does not affect the FoS when using a Mohr-Coulomb failure criterion. 展开更多
关键词 finite element limit analysis(FELA) finite element method Slope stability strength reduction technique Non-associated plasticity Adaptive mesh refinement Initial stresses
下载PDF
3D FEM analysis for layered rock considering anisotropy of shear strength 被引量:3
11
作者 张玉军 张维庆 《Journal of Central South University》 SCIE EI CAS 2010年第6期1357-1363,共7页
An empirical expression of cohesion (C) and friction angle (Ф) for layered rock was suggested. This expression was compared with a test result made by the former researchers. The constitutive relationship of a tr... An empirical expression of cohesion (C) and friction angle (Ф) for layered rock was suggested. This expression was compared with a test result made by the former researchers. The constitutive relationship of a transversely isotropic medium and Mohr-Coulomb criterion in which C and Ф vary with directions were employed, and a relative 3D elasto-plastic FEM code was developed, in which the important thing was to adopt a search-trial method to find the orientation angle (p) of shear failure plane (or weakest shear plane) with respect to the major principal stress as well as the corresponding C and Ф Taking an underground opening as the calculation object, the numerical analyses were carried out by using the FEM code for two cases of transversely isotropic rock and isotropic rock, respectively, and the computation results were compared. The results show that when the rock is a transversely isotropic one, the distributions of displacements, plastic zones and stress contours in the surrounding rock will be non-axisymmetric along the tunnel's vertical axis, which is very different from that of isotropic rock. The stability of the tunnel in transversely isotropic rock is relatively low. 展开更多
关键词 layered rock mass shear strength ANISOTROPY three dimensional finite element method computation analysis
下载PDF
Design of an Experimental Set‑up Concerning Interfacial Stress to Promote Measurement Accuracy of Adhesive Shear Strength Between Ice and Substrate 被引量:2
12
作者 WANG Yusong HAN Liang +2 位作者 ZHU Chunling ZHU Chengxiang LIU Zhenguo 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2022年第5期561-568,共8页
Accumulation of ice on airfoils and engines seriously endangers the safety of the fight.The accurate measurement of adhesion strength at the ice-substrate interface plays a vital role in the design of anti/de-icing sy... Accumulation of ice on airfoils and engines seriously endangers the safety of the fight.The accurate measurement of adhesion strength at the ice-substrate interface plays a vital role in the design of anti/de-icing systems.In this pursuit,the present study envisages the evaluation of the stress at the icesubstrate interface to guide the design of experimental set-ups and improve the measurement accuracy of shear strength using the finite element analysis(FEA)method.By considering such factors as the peeling stress,maximum von-mises stress and uniformity of stress,the height and radius of ice and the loading height are investigated.Based on the simulation results,appropriate parameters are selected for the experimental validation.Simulation results show that the peeling stress is decreased by reducing the loading height and increasing the height of ice.Higher ice,increasing loading height and smaller ice radius are found to be beneficial for the uniformity of stress.To avoid cracks or ice-breaking,it is imperative that the ice should be of a small radius and greater height.Parameters including the ice height of 25 mm,radius of 20 mm,and loading height of 9 mm are adopted in the experiment.The results of FEA and the experimental validation can significantly enhance the measurement accuracy of shear strength. 展开更多
关键词 aircraft de-icing adhesive shear strength finite element analysis(FEA) experimental set-up interfacial stress
下载PDF
Finite element analysis of slope stability by expanding the mobilized principal stress Mohr's circles-Development, encoding and validation 被引量:2
13
作者 Djillali Amar Bouzid 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第4期1165-1179,共15页
In recent years,finite element analysis is increasingly being proposed in slope stability problems as a competitive method to traditional limit equilibrium methods(LEMs)which are known for their inherent deficiencies.... In recent years,finite element analysis is increasingly being proposed in slope stability problems as a competitive method to traditional limit equilibrium methods(LEMs)which are known for their inherent deficiencies.However,the application of finite element method(FEM)to slope stability as a strength reduction method(SRM)or as finite element limit analysis(FELA)is not always a success for the drawbacks that characterize both methods.To increase the performance of finite element analysis in this problem,a new approach is proposed in this paper.It consists in gradually expanding the mobilized stress Mohr’s circles until the soil failure occurs according to a prescribed non-convergence criterion.The present approach called stress deviator increasing method(SDIM)is considered rigorous for three main reasons.Firstly,it preserves the definition of the factor of safety(FOS)as the ratio of soil shear strength to the mobilized shear stress.Secondly,it maintains the progressive development of shear stress resulting from the increase in the principal stress deviator on the same plane,on which the shear strength takes place.Thirdly,by introducing the concept of equivalent stress loading,the resulting trial stresses are checked against the violation of the actual yield criterion formed with the real strength parameters rather than those reduced by a trial factor.The new numerical procedure was encoded in a Fortran computer code called S^(4)DINA and verified by several examples.Comparisons with other numerical methods such as the SRM,gravity increasing method(GIM)or even FELA by assessing both the FOS and contours of equivalent plastic strains showed promising results. 展开更多
关键词 Slope stability finite element analysis strength reduction method(SRM) Stress point-based factor of safety(FOS) Limit equilibrium method(LEM) Stress deviator Mohr’s circle Plastic strain
下载PDF
An Integrated Structural Strength Analysis Method for Spar Type Floating Wind Turbine
14
作者 胡志强 刘毅 王晋 《China Ocean Engineering》 SCIE EI CSCD 2016年第2期217-230,共14页
An integrated structural strength analysis method for a Spar type floating wind turbine is proposed in this paper,and technical issues related to turbine structure modeling and stress combination are also addressed.Th... An integrated structural strength analysis method for a Spar type floating wind turbine is proposed in this paper,and technical issues related to turbine structure modeling and stress combination are also addressed.The NREL-5MW "Hywind" Spar type wind turbine is adopted as study object.Time-domain dynamic coupled simulations are performed by a fully-coupled aero-hydro-servo-elastic tool,FAST,on the purpose of obtaining the dynamic characteristics of the floating wind turbine,and determining parameters for design load cases of finite element calculation.Then design load cases are identified,and finite element analyses are performed for these design load cases.The structural stresses due to wave-induced loads and wind-induced loads are calculated,and then combined to assess the structural strength of the floating wind turbine.The feasibility of the proposed structural strength analysis method for floating wind turbines is then validated. 展开更多
关键词 floating wind turbine structural strength analysis method dynamic coupled simulation finite element analysis
下载PDF
Method to analyze wrinkled membranes with zero shear modulus and equivalent stiffness
15
作者 赵冉 魏德敏 孙文波 《Journal of Central South University》 SCIE EI CAS 2011年第5期1700-1708,共9页
To solve the problems of divergence,low accuracy and project application of membrane wrinkling analysis,an analysis method of zero shear modulus and equivalent stiffness was proposed.This method is an improvement to t... To solve the problems of divergence,low accuracy and project application of membrane wrinkling analysis,an analysis method of zero shear modulus and equivalent stiffness was proposed.This method is an improvement to the previous method (Method I) of local coordinate transposition and stiffness equivalence.The new method is derived and the feasibility is theoretically proved.A small-scale membrane structure is analyzed by the two methods,and the results show that the computational efficiency of the new method (Method II) is approximately 23 times that of Method I.When Method II is applied to a large-scale membrane stadium structure,it is found that this new method can quickly make the second principal stress of one way wrinkled elements zero,and make the two principal stresses of two-way wrinkled elements zero as well.It could attain the correct load responses right after the appearance of wrinkled elements,which indicates that Method II can be applied to wrinkling analysis of large-scale membrane structures. 展开更多
关键词 membrane structures finite element method wrinkling analysis shear modulus zero-setting equivalent stiffness
下载PDF
Force-Based Quadrilateral Plate Bending Element for Plate Using Large Increment Method
16
作者 贾红学 刘西拉 《Journal of Donghua University(English Edition)》 EI CAS 2015年第3期345-350,共6页
A force-based quadrilateral plate element( 4NQP13) for the analysis of the plate bending problems using large increment method( LIM) was proposed. The LIM, a force-based finite element method( FEM),has been successful... A force-based quadrilateral plate element( 4NQP13) for the analysis of the plate bending problems using large increment method( LIM) was proposed. The LIM, a force-based finite element method( FEM),has been successfully developed for the analysis of truss,beam,frame,and 2D continua problems. In these analyses,LIMcan provide more precise stress results and less computational time consumption compared with displacement-based FEM. The plate element was based on the Mindlin-Reissner plate theory which took into account the transverse shear effects.Numerical examples were presented to study its performance including accuracy and convergence behavior,and the results were compared with the results have been obtained from the displacementbased quadrilateral plate elements and the analytical solutions. The4NQP13 element can analyze the moderately thick plates and the thin plates using LIMand is free from spurious zero energy modes and free from shear locking for thin plate analysis. 展开更多
关键词 large increment method(LIM) displacement-based finite element method(FEM) Mindlin-Reissner plate theory spurious zero energy modes shear locking
下载PDF
Relations of Microstructural Attributes and Strength-Ductility of Zirconium Alloys with Hydrides
17
作者 Chao Fang Xiang Guo +1 位作者 Jianghua Li Gang Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第4期407-419,共13页
As the first safety barrier of nuclear reactors,zirconium alloy cladding tubes have attracted extensive attention because of its good mechanical properties.The strength and ductility of zirconium alloy are of great si... As the first safety barrier of nuclear reactors,zirconium alloy cladding tubes have attracted extensive attention because of its good mechanical properties.The strength and ductility of zirconium alloy are of great significance to the service process of cladding tubes,while brittle hydrides precipitate and thus deteriorate the overall performance.Based on the cohesive finite element method,the effects of cohesive strength,interfacial characteristics,and hydrides geometric characteristics on the strength and ductility of two-phase material(zirconium alloy with hydrides)are numerically simulated.The results show that the fracture behavior is significantly affected by the cohesive strength and that the overall strength and ductility are sensitive to the cohesive strength of the zirconium alloy.Furthermore,the interface is revealed to have prominent effects on the overall fracture behavior.When the cohesive strength and fracture energy of the interface are higher than those of the hydride phase,fracture initiates in the hydrides,which is consistent with the experimental phenomena.In addition,it is found that the number density and arrangement of hydrides play important roles in the overall strength and ductility.Our simulation provides theoretical support for the performance analysis of hydrogenated zirconium alloys during nuclear reactor operation. 展开更多
关键词 Zirconium alloy HYDRIDE strength and ductility Cohesive finite element method Microcrack initiation and propagation
下载PDF
旋转剪切式青花椒采摘装置设计与试验 被引量:1
18
作者 杨玲 张原 +5 位作者 何志远 李守太 蒲应俊 陈维汉 杨仕 杨明金 《农业工程学报》 EI CAS CSCD 北大核心 2024年第3期72-83,共12页
针对基于“下桩”采摘方法的青花椒采摘设备存在喂入困难、易堵塞而造成采摘效率低的问题,该研究设计了一种旋转剪切式青花椒采摘装置。首先基于花椒枝物理、力学特性确定旋转剪切式青花椒采摘过程包括花椒枝旋转驱动、花椒枝导向喂入... 针对基于“下桩”采摘方法的青花椒采摘设备存在喂入困难、易堵塞而造成采摘效率低的问题,该研究设计了一种旋转剪切式青花椒采摘装置。首先基于花椒枝物理、力学特性确定旋转剪切式青花椒采摘过程包括花椒枝旋转驱动、花椒枝导向喂入和剪切采摘,剪切采摘功能由往复式切割器实现。并设计双动刀往复式切割器及其传动机构,确定了剪切采摘装置的结构和运动参数。进一步地,运用ANSYS/LS-DYNA构建花椒枝剪切仿真模型,确定最优齿形参数为:刀齿切割角20°,刀齿刃角50°,刀齿厚度2.5 mm,该条件下峰值切割力为3.739 N。最后通过单因素试验确定了花椒枝喂入角度、花椒枝喂入速度、花椒枝旋转速度的取值范围分别为40°~60°、20~40 mm/s、20~40 r/min;并采用BoxBehnken设计法制定三因素二次回归正交组合试验方案,运用Design-Expert 12对试验结果进行方差分析和响应面分析,得到旋转剪切式青花椒采摘装置的最优工作参数为:花椒枝喂入角度55°,花椒枝喂入速度33.21 mm/s,花椒枝旋转速度30 r/min;通过试验验证得出在最优工作参数下,单人单枝喂入时青花椒平均采摘效率为10.95 kg/h,平均采净率为95.57%,平均伤果率为12.87%。研究结果可为青花椒采摘机的研发提供技术参考。 展开更多
关键词 农业机械 优化 有限元分析 青花椒采摘 下桩采摘法 剪切采摘装置
下载PDF
模块化防屈曲钢板墙抗震性能 被引量:1
19
作者 金华建 孙飞飞 +4 位作者 李国强 李可军 常明媛 陈明玲 陈韬 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第1期25-35,共11页
考虑经济性和便利性,提出了模块化防屈曲钢板墙及其常用模数,然后基于已有的防屈曲钢板墙的简化计算模型,推导了在不同墙数量情况下,模块化防屈曲钢板墙充分发挥抗震性能时,周边梁的承载力和刚度需求,并提出了周边梁的设计方法.进而,对... 考虑经济性和便利性,提出了模块化防屈曲钢板墙及其常用模数,然后基于已有的防屈曲钢板墙的简化计算模型,推导了在不同墙数量情况下,模块化防屈曲钢板墙充分发挥抗震性能时,周边梁的承载力和刚度需求,并提出了周边梁的设计方法.进而,对模块化防屈曲钢板墙和整体墙进行了对比验证试验及其有限元模拟分析.研究结果表明:模块化防屈曲钢板墙能够达到与整体钢板墙相同的抗震性能,且周边梁未发生明显转动和破坏,说明所提出的周边梁设计方法是合理的;在层间位移角为1/50时,防屈曲钢板墙上下周边梁均未进入塑性,且承载力和初始刚度等的有限元值与试验值误差小于6%,从而进一步验证了其抗震性能. 展开更多
关键词 模块化防屈曲钢板墙 周边梁需求 设计方法 试验验证 有限元分析
下载PDF
常泰长江大桥组合索塔锚固结构钢-混传剪构造足尺模型试验研究 被引量:1
20
作者 赵灿晖 王康康 +1 位作者 沈孔健 郑清刚 《桥梁建设》 EI CSCD 北大核心 2024年第1期31-38,共8页
常泰长江大桥索塔锚固结构采用钢箱-核芯混凝土组合结构,为研究该新型组合索塔锚固结构钢-混传剪构造的受力特性,进行钢-混传剪构造足尺模型试验研究。制作2个锚固结构足尺节段试验模型,通过压剪试验研究锚固结构的荷载~滑移曲线及应力... 常泰长江大桥索塔锚固结构采用钢箱-核芯混凝土组合结构,为研究该新型组合索塔锚固结构钢-混传剪构造的受力特性,进行钢-混传剪构造足尺模型试验研究。制作2个锚固结构足尺节段试验模型,通过压剪试验研究锚固结构的荷载~滑移曲线及应力、应变分布等受力特性,并通过有限元模型分析锚固结构的传力机理和各组件的内力分配比例,推导剪力钉剪力计算方法。结果表明:在2.14倍单索最大索力荷载作用下,锚固结构保持弹性状态,钢壁板未产生明显滑移,钢-混界面最大滑移不超过0.25 mm,该锚固结构中钢-混传剪构造至少具有2.14倍的安全系数;荷载作用下,剪力钉剪力从上至下逐渐增大,锚腹板附近底部3排剪力钉剪力较大,钢-混传剪构造至少存在剪力钉和界面摩擦力2种传剪机制,钢-混传剪构造的承载能力显著提高;钢-混传剪构造受力过程分为粘结力传力阶段和局部滑移阶段,剪力钉剪力分布不仅与沿剪切方向长度分布有关,也与荷载的大小线性相关。 展开更多
关键词 斜拉桥 组合索塔锚固结构 钢-混传剪构造 荷载~滑移曲线 足尺模型试验 有限元法
下载PDF
上一页 1 2 145 下一页 到第
使用帮助 返回顶部