Continuous-flow microchannels are widely employed for synthesizing various materials,including nanoparticles,polymers,and metal-organic frameworks(MOFs),to name a few.Microsystem technology allows precise control over...Continuous-flow microchannels are widely employed for synthesizing various materials,including nanoparticles,polymers,and metal-organic frameworks(MOFs),to name a few.Microsystem technology allows precise control over reaction parameters,resulting in purer,more uniform,and structurally stable products due to more effective mass transfer manipulation.However,continuous-flow synthesis processes may be accompanied by the emergence of spatial convective structures initiating convective flows.On the one hand,convection can accelerate reactions by intensifying mass transfer.On the other hand,it may lead to non-uniformity in the final product or defects,especially in MOF microcrystal synthesis.The ability to distinguish regions of convective and diffusive mass transfer may be the key to performing higher-quality reactions and obtaining purer products.In this study,we investigate,for the first time,the possibility of using the information complexity measure as a criterion for assessing the intensity of mass transfer in microchannels,considering both spatial and temporal non-uniformities of liquid’s distributions resulting from convection formation.We calculate the complexity using shearlet transform based on a local approach.In contrast to existing methods for calculating complexity,the shearlet transform based approach provides a more detailed representation of local heterogeneities.Our analysis involves experimental images illustrating the mixing process of two non-reactive liquids in a Y-type continuous-flow microchannel under conditions of double-diffusive convection formation.The obtained complexity fields characterize the mixing process and structure formation,revealing variations in mass transfer intensity along the microchannel.We compare the results with cases of liquid mixing via a pure diffusive mechanism.Upon analysis,it was revealed that the complexity measure exhibits sensitivity to variations in the type of mass transfer,establishing its feasibility as an indirect criterion for assessing mass transfer intensity.The method presented can extend beyond flow analysis,finding application in the controlling of microstructures of various materials(porosity,for instance)or surface defects in metals,optical systems and other materials that hold significant relevance in materials science and engineering.展开更多
该文通过分析SAR图像的噪声成因以及其斑点噪声模型,结合图像的稀疏表示理论提出一种基于稀疏表示的Shearlet域SAR图像去噪算法。算法从整体上对SAR图像进行去噪:首先对SAR图像进行Shearlet变换,然后利用稀疏表示模型构造出去噪的最优...该文通过分析SAR图像的噪声成因以及其斑点噪声模型,结合图像的稀疏表示理论提出一种基于稀疏表示的Shearlet域SAR图像去噪算法。算法从整体上对SAR图像进行去噪:首先对SAR图像进行Shearlet变换,然后利用稀疏表示模型构造出去噪的最优化模型,在此基础上进行迭代去噪,然后重构SAR图像得到去噪后的图像。实验结果表明:该文所提出的算法不仅可以显著去除相干斑噪声,提高去噪图像的峰值信噪比(Peak Signal toNoise Ratio,PSNR),还明显地改善了图像的视觉效果,更好地保留了图像纹理信息。展开更多
基金supported by the Ministry of Science and High Education of Russia(Theme No.368121031700169-1 of ICMM UrB RAS).
文摘Continuous-flow microchannels are widely employed for synthesizing various materials,including nanoparticles,polymers,and metal-organic frameworks(MOFs),to name a few.Microsystem technology allows precise control over reaction parameters,resulting in purer,more uniform,and structurally stable products due to more effective mass transfer manipulation.However,continuous-flow synthesis processes may be accompanied by the emergence of spatial convective structures initiating convective flows.On the one hand,convection can accelerate reactions by intensifying mass transfer.On the other hand,it may lead to non-uniformity in the final product or defects,especially in MOF microcrystal synthesis.The ability to distinguish regions of convective and diffusive mass transfer may be the key to performing higher-quality reactions and obtaining purer products.In this study,we investigate,for the first time,the possibility of using the information complexity measure as a criterion for assessing the intensity of mass transfer in microchannels,considering both spatial and temporal non-uniformities of liquid’s distributions resulting from convection formation.We calculate the complexity using shearlet transform based on a local approach.In contrast to existing methods for calculating complexity,the shearlet transform based approach provides a more detailed representation of local heterogeneities.Our analysis involves experimental images illustrating the mixing process of two non-reactive liquids in a Y-type continuous-flow microchannel under conditions of double-diffusive convection formation.The obtained complexity fields characterize the mixing process and structure formation,revealing variations in mass transfer intensity along the microchannel.We compare the results with cases of liquid mixing via a pure diffusive mechanism.Upon analysis,it was revealed that the complexity measure exhibits sensitivity to variations in the type of mass transfer,establishing its feasibility as an indirect criterion for assessing mass transfer intensity.The method presented can extend beyond flow analysis,finding application in the controlling of microstructures of various materials(porosity,for instance)or surface defects in metals,optical systems and other materials that hold significant relevance in materials science and engineering.
文摘该文通过分析SAR图像的噪声成因以及其斑点噪声模型,结合图像的稀疏表示理论提出一种基于稀疏表示的Shearlet域SAR图像去噪算法。算法从整体上对SAR图像进行去噪:首先对SAR图像进行Shearlet变换,然后利用稀疏表示模型构造出去噪的最优化模型,在此基础上进行迭代去噪,然后重构SAR图像得到去噪后的图像。实验结果表明:该文所提出的算法不仅可以显著去除相干斑噪声,提高去噪图像的峰值信噪比(Peak Signal toNoise Ratio,PSNR),还明显地改善了图像的视觉效果,更好地保留了图像纹理信息。