期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Shearlet Based Video Fingerprint for Content-Based Copy Detection 被引量:1
1
作者 Fang Yuan Lam-Man Po +4 位作者 Mengyang Liu Xuyuan Xu Weihua Jian Kaman Wong Keith W. Cheung 《Journal of Signal and Information Processing》 2016年第2期84-97,共14页
Content-based copy detection (CBCD) is widely used in copyright control for protecting unauthorized use of digital video and its key issue is to extract robust fingerprint against different attacked versions of the sa... Content-based copy detection (CBCD) is widely used in copyright control for protecting unauthorized use of digital video and its key issue is to extract robust fingerprint against different attacked versions of the same video. In this paper, the “natural parts” (coarse scales) of the Shearlet coefficients are used to generate robust video fingerprints for content-based video copy detection applications. The proposed Shearlet-based video fingerprint (SBVF) is constructed by the Shearlet coefficients in Scale 1 (lowest coarse scale) for revealing the spatial features and Scale 2 (second lowest coarse scale) for revealing the directional features. To achieve spatiotemporal natural, the proposed SBVF is applied to Temporal Informative Representative Image (TIRI) of the video sequences for final fingerprints generation. A TIRI-SBVF based CBCD system is constructed with use of Invert Index File (IIF) hash searching approach for performance evaluation and comparison using TRECVID 2010 dataset. Common attacks are imposed in the queries such as luminance attacks (luminance change, salt and pepper noise, Gaussian noise, text insertion);geometry attacks (letter box and rotation);and temporal attacks (dropping frame, time shifting). The experimental results demonstrate that the proposed TIRI-SBVF fingerprinting algorithm is robust on CBCD applications on most of the attacks. It can achieve an average F1 score of about 0.99, less than 0.01% of false positive rate (FPR) and 97% accuracy of localization. 展开更多
关键词 Video Fingerprint Content-based Copy Detection shearlet Transform
下载PDF
Robust Watermarking Algorithm for Medical Images Based on Non-Subsampled Shearlet Transform and Schur Decomposition
2
作者 Meng Yang Jingbing Li +2 位作者 Uzair Aslam Bhatti Chunyan Shao Yen-Wei Chen 《Computers, Materials & Continua》 SCIE EI 2023年第6期5539-5554,共16页
With the development of digitalization in healthcare,more and more information is delivered and stored in digital form,facilitating people’s lives significantly.In the meanwhile,privacy leakage and security issues co... With the development of digitalization in healthcare,more and more information is delivered and stored in digital form,facilitating people’s lives significantly.In the meanwhile,privacy leakage and security issues come along with it.Zero watermarking can solve this problem well.To protect the security of medical information and improve the algorithm’s robustness,this paper proposes a robust watermarking algorithm for medical images based on Non-Subsampled Shearlet Transform(NSST)and Schur decomposition.Firstly,the low-frequency subband image of the original medical image is obtained by NSST and chunked.Secondly,the Schur decomposition of low-frequency blocks to get stable values,extracting the maximum absolute value of the diagonal elements of the upper triangle matrix after the Schur decom-position of each low-frequency block and constructing the transition matrix from it.Then,the mean of the matrix is compared to each element’s value,creating a feature matrix by combining perceptual hashing,and selecting 32 bits as the feature sequence.Finally,the feature vector is exclusive OR(XOR)operated with the encrypted watermark information to get the zero watermark and complete registration with a third-party copyright certification center.Experimental data show that the Normalized Correlation(NC)values of watermarks extracted in random carrier medical images are above 0.5,with higher robustness than traditional algorithms,especially against geometric attacks and achieve watermark information invisibility without altering the carrier medical image. 展开更多
关键词 Non-Subsampled shearlet Transform(NSST) Schur decomposition perceptual hashing chaotic mapping zero watermark
下载PDF
Skin Lesion Classification System Using Shearlets
3
作者 S.Mohan Kumar T.Kumanan 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期833-844,共12页
The main cause of skin cancer is the ultraviolet radiation of the sun.It spreads quickly to other body parts.Thus,early diagnosis is required to decrease the mortality rate due to skin cancer.In this study,an automati... The main cause of skin cancer is the ultraviolet radiation of the sun.It spreads quickly to other body parts.Thus,early diagnosis is required to decrease the mortality rate due to skin cancer.In this study,an automatic system for Skin Lesion Classification(SLC)using Non-Subsampled Shearlet Transform(NSST)based energy features and Support Vector Machine(SVM)classifier is proposed.Atfirst,the NSST is used for the decomposition of input skin lesion images with different directions like 2,4,8 and 16.From the NSST’s sub-bands,energy fea-tures are extracted and stored in the feature database for training.SVM classifier is used for the classification of skin lesion images.The dermoscopic skin images are obtained from PH^(2) database which comprises of 200 dermoscopic color images with melanocytic lesions.The performances of the SLC system are evaluated using the confusion matrix and Receiver Operating Characteristic(ROC)curves.The SLC system achieves 96%classification accuracy using NSST’s energy fea-tures obtained from 3^(rd) level with 8-directions. 展开更多
关键词 Skin lesion classification non-subsampled shearlet transform sub-band coefficients energy feature support vector machine
下载PDF
Shear Let Transform Residual Learning Approach for Single-Image Super-Resolution
4
作者 Israa Ismail Ghada Eltaweel Mohamed Meselhy Eltoukhy 《Computers, Materials & Continua》 SCIE EI 2024年第5期3193-3209,共17页
Super-resolution techniques are employed to enhance image resolution by reconstructing high-resolution images from one or more low-resolution inputs.Super-resolution is of paramount importance in the context of remote... Super-resolution techniques are employed to enhance image resolution by reconstructing high-resolution images from one or more low-resolution inputs.Super-resolution is of paramount importance in the context of remote sensing,satellite,aerial,security and surveillance imaging.Super-resolution remote sensing imagery is essential for surveillance and security purposes,enabling authorities to monitor remote or sensitive areas with greater clarity.This study introduces a single-image super-resolution approach for remote sensing images,utilizing deep shearlet residual learning in the shearlet transform domain,and incorporating the Enhanced Deep Super-Resolution network(EDSR).Unlike conventional approaches that estimate residuals between high and low-resolution images,the proposed approach calculates the shearlet coefficients for the desired high-resolution image using the provided low-resolution image instead of estimating a residual image between the high-and low-resolution image.The shearlet transform is chosen for its excellent sparse approximation capabilities.Initially,remote sensing images are transformed into the shearlet domain,which divides the input image into low and high frequencies.The shearlet coefficients are fed into the EDSR network.The high-resolution image is subsequently reconstructed using the inverse shearlet transform.The incorporation of the EDSR network enhances training stability,leading to improved generated images.The experimental results from the Deep Shearlet Residual Learning approach demonstrate its superior performance in remote sensing image recovery,effectively restoring both global topology and local edge detail information,thereby enhancing image quality.Compared to other networks,our proposed approach outperforms the state-of-the-art in terms of image quality,achieving an average peak signal-to-noise ratio of 35 and a structural similarity index measure of approximately 0.9. 展开更多
关键词 SUPER-RESOLUTION shearlet transform shearlet coefficients enhanced deep super-resolution network
下载PDF
Infrared polarization image fusion based on combination of NSST and improved PCA 被引量:3
5
作者 杨风暴 董安冉 +1 位作者 张雷 吉琳娜 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2016年第2期176-184,共9页
In view of the problem that current mainstream fusion method of infrared polarization image—Multiscale Geometry Analysis method only focuses on a certain characteristic to image representation.And spatial domain fusi... In view of the problem that current mainstream fusion method of infrared polarization image—Multiscale Geometry Analysis method only focuses on a certain characteristic to image representation.And spatial domain fusion method,Principal Component Analysis(PCA)method has the shortcoming of losing small target,this paper presents a new fusion method of infrared polarization images based on combination of Nonsubsampled Shearlet Transformation(NSST)and improved PCA.This method can make full use of the effectiveness to image details expressed by NSST and the characteristics that PCA can highlight the main features of images.The combination of the two methods can integrate the complementary features of themselves to retain features of targets and image details fully.Firstly,intensity and polarization images are decomposed into low frequency and high frequency components with different directions by NSST.Secondly,the low frequency components are fused with improved PCA,while the high frequency components are fused by joint decision making rule with local energy and local variance.Finally,the fused image is reconstructed with the inverse NSST to obtain the final fused image of infrared polarization.The experiment results show that the method proposed has higher advantages than other methods in terms of detail preservation and visual effect. 展开更多
关键词 image fusion infrared image polarization image nonsubsampled shearlet transformation(NSST) principal com ponent analysis(PCA)
下载PDF
Multi-focus image fusion based on block matching in 3D transform domain 被引量:5
6
作者 YANG Dongsheng HU Shaohai +2 位作者 LIU Shuaiqi MA Xiaole SUN Yuchao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第2期415-428,共14页
Fusion methods based on multi-scale transforms have become the mainstream of the pixel-level image fusion. However,most of these methods cannot fully exploit spatial domain information of source images, which lead to ... Fusion methods based on multi-scale transforms have become the mainstream of the pixel-level image fusion. However,most of these methods cannot fully exploit spatial domain information of source images, which lead to the degradation of image.This paper presents a fusion framework based on block-matching and 3D(BM3D) multi-scale transform. The algorithm first divides the image into different blocks and groups these 2D image blocks into 3D arrays by their similarity. Then it uses a 3D transform which consists of a 2D multi-scale and a 1D transform to transfer the arrays into transform coefficients, and then the obtained low-and high-coefficients are fused by different fusion rules. The final fused image is obtained from a series of fused 3D image block groups after the inverse transform by using an aggregation process. In the experimental part, we comparatively analyze some existing algorithms and the using of different transforms, e.g. non-subsampled Contourlet transform(NSCT), non-subsampled Shearlet transform(NSST), in the 3D transform step. Experimental results show that the proposed fusion framework can not only improve subjective visual effect, but also obtain better objective evaluation criteria than state-of-the-art methods. 展开更多
关键词 image fusion block matching 3D transform block-matching and 3D(BM3D) non-subsampled shearlet transform(NSST)
下载PDF
Multimodal Medical Image Fusion Based on Parameter Adaptive PCNN and Latent Low-rank Representation 被引量:1
7
作者 WANG Wenyan ZHOU Xianchun YANG Liangjian 《Instrumentation》 2023年第1期45-58,共14页
Medical image fusion has been developed as an efficient assistive technology in various clinical applications such as medical diagnosis and treatment planning.Aiming at the problem of insufficient protection of image ... Medical image fusion has been developed as an efficient assistive technology in various clinical applications such as medical diagnosis and treatment planning.Aiming at the problem of insufficient protection of image contour and detail information by traditional image fusion methods,a new multimodal medical image fusion method is proposed.This method first uses non-subsampled shearlet transform to decompose the source image to obtain high and low frequency subband coefficients,then uses the latent low rank representation algorithm to fuse the low frequency subband coefficients,and applies the improved PAPCNN algorithm to fuse the high frequency subband coefficients.Finally,based on the automatic setting of parameters,the optimization method configuration of the time decay factorαe is carried out.The experimental results show that the proposed method solves the problems of difficult parameter setting and insufficient detail protection ability in traditional PCNN algorithm fusion images,and at the same time,it has achieved great improvement in visual quality and objective evaluation indicators. 展开更多
关键词 Image Fusion Non-subsampled shearlet Transform Parameter Adaptive PCNN Latent Low-rank Representation
下载PDF
基于PCNN图像分割的医学图像融合算法 被引量:3
8
作者 黄陈建 戴文战 《光电子.激光》 CAS CSCD 北大核心 2022年第1期37-44,共8页
为充分提取源图像间的互补信息,改进传统的图像融合算法在亮度维持、能量保留、边缘信息保持等方面的不足,本文提出了基于脉冲耦合神经网络(pulse coupled neural network, PCNN)图像分割的医学图像融合算法。该算法综合了非下采样剪切... 为充分提取源图像间的互补信息,改进传统的图像融合算法在亮度维持、能量保留、边缘信息保持等方面的不足,本文提出了基于脉冲耦合神经网络(pulse coupled neural network, PCNN)图像分割的医学图像融合算法。该算法综合了非下采样剪切波变换(non-subsampled shearlet transform, NSST)与PCNN。首先,选取标准差较大的源图像作为被分割图像,标准差较小的源图像作为参照图像,将源图像进行NSST分解,获取源图像低频子带系数和高频子带系数;在低频融合中,利用参数自适应的PCNN对被分割图像的低频子带进行分割,根据分割结果获取融合低频子带系数;在高频融合中,采用以区域能量和与拉普拉斯能量和两者的乘积作为判断函数,获取融合高频子带系数;利用NSST逆变换获取融合图像。最后,应用本文提出的算法,对脑萎缩、急性中风和高血压性脑病等3组电脑断层扫描/磁共振成像(computerized tomography/magnetic resonance imaging, CT/MRI)图像进行了融合仿真,并将仿真结果与2018年后国际刊上提出的5种算法的融合图像进行比较。结果表明,应用本文提出的融合算法得到的图像,有效地增强了不同模态间的信息互补,保持了融合图像与源图像具有相同明亮程度,又保留了源图像低亮度部分的边缘信息,更加符合人眼视觉特性,具有更高的客观评价指标。 展开更多
关键词 图像融合 图像分割 非下采样剪切波变换(non-subsampled shearlet transform NSST) 脉冲耦合神经网络(pulse coupled neural network PCNN) 客观评价指标
原文传递
Low-light color image enhancement based on NSST
9
作者 Wu Xiaochu Tang Guijin +2 位作者 Liu Xiaohua Cui Ziguan Luo Suhuai 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2019年第5期41-48,共8页
In order to improve the visibility and contrast of low-light images and better preserve the edge and details of images,a new low-light color image enhancement algorithm is proposed in this paper.The steps of the propo... In order to improve the visibility and contrast of low-light images and better preserve the edge and details of images,a new low-light color image enhancement algorithm is proposed in this paper.The steps of the proposed algorithm are described as follows.First,the image is converted from the red,green and blue(RGB)color space to the hue,saturation and value(HSV)color space,and the histogram equalization(HE)is performed on the value component.Next,non-subsampled shearlet transform(NSST)is used on the value component to decompose the image into a low frequency sub-band and several high frequency sub-bands.Then,the low frequency sub-band and high frequency sub-bands are enhanced respectively by Gamma correction and improved guided image filtering(IGIF),and the enhanced value component is formed by inverse NSST transform.Finally,the image is converted back to the RGB color space to obtain the enhanced image.Experimental results show that the proposed method not only significantly improves the visibility and contrast,but also better preserves the edge and details of images. 展开更多
关键词 non-subsampled shearlet transform guided image filtering low-light image enhancement the HSV color space
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部