Content-based copy detection (CBCD) is widely used in copyright control for protecting unauthorized use of digital video and its key issue is to extract robust fingerprint against different attacked versions of the sa...Content-based copy detection (CBCD) is widely used in copyright control for protecting unauthorized use of digital video and its key issue is to extract robust fingerprint against different attacked versions of the same video. In this paper, the “natural parts” (coarse scales) of the Shearlet coefficients are used to generate robust video fingerprints for content-based video copy detection applications. The proposed Shearlet-based video fingerprint (SBVF) is constructed by the Shearlet coefficients in Scale 1 (lowest coarse scale) for revealing the spatial features and Scale 2 (second lowest coarse scale) for revealing the directional features. To achieve spatiotemporal natural, the proposed SBVF is applied to Temporal Informative Representative Image (TIRI) of the video sequences for final fingerprints generation. A TIRI-SBVF based CBCD system is constructed with use of Invert Index File (IIF) hash searching approach for performance evaluation and comparison using TRECVID 2010 dataset. Common attacks are imposed in the queries such as luminance attacks (luminance change, salt and pepper noise, Gaussian noise, text insertion);geometry attacks (letter box and rotation);and temporal attacks (dropping frame, time shifting). The experimental results demonstrate that the proposed TIRI-SBVF fingerprinting algorithm is robust on CBCD applications on most of the attacks. It can achieve an average F1 score of about 0.99, less than 0.01% of false positive rate (FPR) and 97% accuracy of localization.展开更多
With the development of digitalization in healthcare,more and more information is delivered and stored in digital form,facilitating people’s lives significantly.In the meanwhile,privacy leakage and security issues co...With the development of digitalization in healthcare,more and more information is delivered and stored in digital form,facilitating people’s lives significantly.In the meanwhile,privacy leakage and security issues come along with it.Zero watermarking can solve this problem well.To protect the security of medical information and improve the algorithm’s robustness,this paper proposes a robust watermarking algorithm for medical images based on Non-Subsampled Shearlet Transform(NSST)and Schur decomposition.Firstly,the low-frequency subband image of the original medical image is obtained by NSST and chunked.Secondly,the Schur decomposition of low-frequency blocks to get stable values,extracting the maximum absolute value of the diagonal elements of the upper triangle matrix after the Schur decom-position of each low-frequency block and constructing the transition matrix from it.Then,the mean of the matrix is compared to each element’s value,creating a feature matrix by combining perceptual hashing,and selecting 32 bits as the feature sequence.Finally,the feature vector is exclusive OR(XOR)operated with the encrypted watermark information to get the zero watermark and complete registration with a third-party copyright certification center.Experimental data show that the Normalized Correlation(NC)values of watermarks extracted in random carrier medical images are above 0.5,with higher robustness than traditional algorithms,especially against geometric attacks and achieve watermark information invisibility without altering the carrier medical image.展开更多
The main cause of skin cancer is the ultraviolet radiation of the sun.It spreads quickly to other body parts.Thus,early diagnosis is required to decrease the mortality rate due to skin cancer.In this study,an automati...The main cause of skin cancer is the ultraviolet radiation of the sun.It spreads quickly to other body parts.Thus,early diagnosis is required to decrease the mortality rate due to skin cancer.In this study,an automatic system for Skin Lesion Classification(SLC)using Non-Subsampled Shearlet Transform(NSST)based energy features and Support Vector Machine(SVM)classifier is proposed.Atfirst,the NSST is used for the decomposition of input skin lesion images with different directions like 2,4,8 and 16.From the NSST’s sub-bands,energy fea-tures are extracted and stored in the feature database for training.SVM classifier is used for the classification of skin lesion images.The dermoscopic skin images are obtained from PH^(2) database which comprises of 200 dermoscopic color images with melanocytic lesions.The performances of the SLC system are evaluated using the confusion matrix and Receiver Operating Characteristic(ROC)curves.The SLC system achieves 96%classification accuracy using NSST’s energy fea-tures obtained from 3^(rd) level with 8-directions.展开更多
Super-resolution techniques are employed to enhance image resolution by reconstructing high-resolution images from one or more low-resolution inputs.Super-resolution is of paramount importance in the context of remote...Super-resolution techniques are employed to enhance image resolution by reconstructing high-resolution images from one or more low-resolution inputs.Super-resolution is of paramount importance in the context of remote sensing,satellite,aerial,security and surveillance imaging.Super-resolution remote sensing imagery is essential for surveillance and security purposes,enabling authorities to monitor remote or sensitive areas with greater clarity.This study introduces a single-image super-resolution approach for remote sensing images,utilizing deep shearlet residual learning in the shearlet transform domain,and incorporating the Enhanced Deep Super-Resolution network(EDSR).Unlike conventional approaches that estimate residuals between high and low-resolution images,the proposed approach calculates the shearlet coefficients for the desired high-resolution image using the provided low-resolution image instead of estimating a residual image between the high-and low-resolution image.The shearlet transform is chosen for its excellent sparse approximation capabilities.Initially,remote sensing images are transformed into the shearlet domain,which divides the input image into low and high frequencies.The shearlet coefficients are fed into the EDSR network.The high-resolution image is subsequently reconstructed using the inverse shearlet transform.The incorporation of the EDSR network enhances training stability,leading to improved generated images.The experimental results from the Deep Shearlet Residual Learning approach demonstrate its superior performance in remote sensing image recovery,effectively restoring both global topology and local edge detail information,thereby enhancing image quality.Compared to other networks,our proposed approach outperforms the state-of-the-art in terms of image quality,achieving an average peak signal-to-noise ratio of 35 and a structural similarity index measure of approximately 0.9.展开更多
In view of the problem that current mainstream fusion method of infrared polarization image—Multiscale Geometry Analysis method only focuses on a certain characteristic to image representation.And spatial domain fusi...In view of the problem that current mainstream fusion method of infrared polarization image—Multiscale Geometry Analysis method only focuses on a certain characteristic to image representation.And spatial domain fusion method,Principal Component Analysis(PCA)method has the shortcoming of losing small target,this paper presents a new fusion method of infrared polarization images based on combination of Nonsubsampled Shearlet Transformation(NSST)and improved PCA.This method can make full use of the effectiveness to image details expressed by NSST and the characteristics that PCA can highlight the main features of images.The combination of the two methods can integrate the complementary features of themselves to retain features of targets and image details fully.Firstly,intensity and polarization images are decomposed into low frequency and high frequency components with different directions by NSST.Secondly,the low frequency components are fused with improved PCA,while the high frequency components are fused by joint decision making rule with local energy and local variance.Finally,the fused image is reconstructed with the inverse NSST to obtain the final fused image of infrared polarization.The experiment results show that the method proposed has higher advantages than other methods in terms of detail preservation and visual effect.展开更多
Fusion methods based on multi-scale transforms have become the mainstream of the pixel-level image fusion. However,most of these methods cannot fully exploit spatial domain information of source images, which lead to ...Fusion methods based on multi-scale transforms have become the mainstream of the pixel-level image fusion. However,most of these methods cannot fully exploit spatial domain information of source images, which lead to the degradation of image.This paper presents a fusion framework based on block-matching and 3D(BM3D) multi-scale transform. The algorithm first divides the image into different blocks and groups these 2D image blocks into 3D arrays by their similarity. Then it uses a 3D transform which consists of a 2D multi-scale and a 1D transform to transfer the arrays into transform coefficients, and then the obtained low-and high-coefficients are fused by different fusion rules. The final fused image is obtained from a series of fused 3D image block groups after the inverse transform by using an aggregation process. In the experimental part, we comparatively analyze some existing algorithms and the using of different transforms, e.g. non-subsampled Contourlet transform(NSCT), non-subsampled Shearlet transform(NSST), in the 3D transform step. Experimental results show that the proposed fusion framework can not only improve subjective visual effect, but also obtain better objective evaluation criteria than state-of-the-art methods.展开更多
Medical image fusion has been developed as an efficient assistive technology in various clinical applications such as medical diagnosis and treatment planning.Aiming at the problem of insufficient protection of image ...Medical image fusion has been developed as an efficient assistive technology in various clinical applications such as medical diagnosis and treatment planning.Aiming at the problem of insufficient protection of image contour and detail information by traditional image fusion methods,a new multimodal medical image fusion method is proposed.This method first uses non-subsampled shearlet transform to decompose the source image to obtain high and low frequency subband coefficients,then uses the latent low rank representation algorithm to fuse the low frequency subband coefficients,and applies the improved PAPCNN algorithm to fuse the high frequency subband coefficients.Finally,based on the automatic setting of parameters,the optimization method configuration of the time decay factorαe is carried out.The experimental results show that the proposed method solves the problems of difficult parameter setting and insufficient detail protection ability in traditional PCNN algorithm fusion images,and at the same time,it has achieved great improvement in visual quality and objective evaluation indicators.展开更多
In order to improve the visibility and contrast of low-light images and better preserve the edge and details of images,a new low-light color image enhancement algorithm is proposed in this paper.The steps of the propo...In order to improve the visibility and contrast of low-light images and better preserve the edge and details of images,a new low-light color image enhancement algorithm is proposed in this paper.The steps of the proposed algorithm are described as follows.First,the image is converted from the red,green and blue(RGB)color space to the hue,saturation and value(HSV)color space,and the histogram equalization(HE)is performed on the value component.Next,non-subsampled shearlet transform(NSST)is used on the value component to decompose the image into a low frequency sub-band and several high frequency sub-bands.Then,the low frequency sub-band and high frequency sub-bands are enhanced respectively by Gamma correction and improved guided image filtering(IGIF),and the enhanced value component is formed by inverse NSST transform.Finally,the image is converted back to the RGB color space to obtain the enhanced image.Experimental results show that the proposed method not only significantly improves the visibility and contrast,but also better preserves the edge and details of images.展开更多
文摘Content-based copy detection (CBCD) is widely used in copyright control for protecting unauthorized use of digital video and its key issue is to extract robust fingerprint against different attacked versions of the same video. In this paper, the “natural parts” (coarse scales) of the Shearlet coefficients are used to generate robust video fingerprints for content-based video copy detection applications. The proposed Shearlet-based video fingerprint (SBVF) is constructed by the Shearlet coefficients in Scale 1 (lowest coarse scale) for revealing the spatial features and Scale 2 (second lowest coarse scale) for revealing the directional features. To achieve spatiotemporal natural, the proposed SBVF is applied to Temporal Informative Representative Image (TIRI) of the video sequences for final fingerprints generation. A TIRI-SBVF based CBCD system is constructed with use of Invert Index File (IIF) hash searching approach for performance evaluation and comparison using TRECVID 2010 dataset. Common attacks are imposed in the queries such as luminance attacks (luminance change, salt and pepper noise, Gaussian noise, text insertion);geometry attacks (letter box and rotation);and temporal attacks (dropping frame, time shifting). The experimental results demonstrate that the proposed TIRI-SBVF fingerprinting algorithm is robust on CBCD applications on most of the attacks. It can achieve an average F1 score of about 0.99, less than 0.01% of false positive rate (FPR) and 97% accuracy of localization.
基金supported in part by the Natural Science Foundation of China under Grants 62063004the Key Research Project of Hainan Province under Grant ZDYF2021SHFZ093+1 种基金the Hainan Provincial Natural Science Foundation of China under Grants 2019RC018 and 619QN246the postdoctoral research from Zhejiang Province under Grant ZJ2021028.
文摘With the development of digitalization in healthcare,more and more information is delivered and stored in digital form,facilitating people’s lives significantly.In the meanwhile,privacy leakage and security issues come along with it.Zero watermarking can solve this problem well.To protect the security of medical information and improve the algorithm’s robustness,this paper proposes a robust watermarking algorithm for medical images based on Non-Subsampled Shearlet Transform(NSST)and Schur decomposition.Firstly,the low-frequency subband image of the original medical image is obtained by NSST and chunked.Secondly,the Schur decomposition of low-frequency blocks to get stable values,extracting the maximum absolute value of the diagonal elements of the upper triangle matrix after the Schur decom-position of each low-frequency block and constructing the transition matrix from it.Then,the mean of the matrix is compared to each element’s value,creating a feature matrix by combining perceptual hashing,and selecting 32 bits as the feature sequence.Finally,the feature vector is exclusive OR(XOR)operated with the encrypted watermark information to get the zero watermark and complete registration with a third-party copyright certification center.Experimental data show that the Normalized Correlation(NC)values of watermarks extracted in random carrier medical images are above 0.5,with higher robustness than traditional algorithms,especially against geometric attacks and achieve watermark information invisibility without altering the carrier medical image.
文摘The main cause of skin cancer is the ultraviolet radiation of the sun.It spreads quickly to other body parts.Thus,early diagnosis is required to decrease the mortality rate due to skin cancer.In this study,an automatic system for Skin Lesion Classification(SLC)using Non-Subsampled Shearlet Transform(NSST)based energy features and Support Vector Machine(SVM)classifier is proposed.Atfirst,the NSST is used for the decomposition of input skin lesion images with different directions like 2,4,8 and 16.From the NSST’s sub-bands,energy fea-tures are extracted and stored in the feature database for training.SVM classifier is used for the classification of skin lesion images.The dermoscopic skin images are obtained from PH^(2) database which comprises of 200 dermoscopic color images with melanocytic lesions.The performances of the SLC system are evaluated using the confusion matrix and Receiver Operating Characteristic(ROC)curves.The SLC system achieves 96%classification accuracy using NSST’s energy fea-tures obtained from 3^(rd) level with 8-directions.
文摘Super-resolution techniques are employed to enhance image resolution by reconstructing high-resolution images from one or more low-resolution inputs.Super-resolution is of paramount importance in the context of remote sensing,satellite,aerial,security and surveillance imaging.Super-resolution remote sensing imagery is essential for surveillance and security purposes,enabling authorities to monitor remote or sensitive areas with greater clarity.This study introduces a single-image super-resolution approach for remote sensing images,utilizing deep shearlet residual learning in the shearlet transform domain,and incorporating the Enhanced Deep Super-Resolution network(EDSR).Unlike conventional approaches that estimate residuals between high and low-resolution images,the proposed approach calculates the shearlet coefficients for the desired high-resolution image using the provided low-resolution image instead of estimating a residual image between the high-and low-resolution image.The shearlet transform is chosen for its excellent sparse approximation capabilities.Initially,remote sensing images are transformed into the shearlet domain,which divides the input image into low and high frequencies.The shearlet coefficients are fed into the EDSR network.The high-resolution image is subsequently reconstructed using the inverse shearlet transform.The incorporation of the EDSR network enhances training stability,leading to improved generated images.The experimental results from the Deep Shearlet Residual Learning approach demonstrate its superior performance in remote sensing image recovery,effectively restoring both global topology and local edge detail information,thereby enhancing image quality.Compared to other networks,our proposed approach outperforms the state-of-the-art in terms of image quality,achieving an average peak signal-to-noise ratio of 35 and a structural similarity index measure of approximately 0.9.
基金Open Fund Project of Key Laboratory of Instrumentation Science&Dynamic Measurement(No.2DSYSJ2015005)Specialized Research Fund for the Doctoral Program of Ministry of Education Colleges(No.20121420110004)
文摘In view of the problem that current mainstream fusion method of infrared polarization image—Multiscale Geometry Analysis method only focuses on a certain characteristic to image representation.And spatial domain fusion method,Principal Component Analysis(PCA)method has the shortcoming of losing small target,this paper presents a new fusion method of infrared polarization images based on combination of Nonsubsampled Shearlet Transformation(NSST)and improved PCA.This method can make full use of the effectiveness to image details expressed by NSST and the characteristics that PCA can highlight the main features of images.The combination of the two methods can integrate the complementary features of themselves to retain features of targets and image details fully.Firstly,intensity and polarization images are decomposed into low frequency and high frequency components with different directions by NSST.Secondly,the low frequency components are fused with improved PCA,while the high frequency components are fused by joint decision making rule with local energy and local variance.Finally,the fused image is reconstructed with the inverse NSST to obtain the final fused image of infrared polarization.The experiment results show that the method proposed has higher advantages than other methods in terms of detail preservation and visual effect.
基金supported by the National Natural Science Foundation of China(6157206361401308)+6 种基金the Fundamental Research Funds for the Central Universities(2016YJS039)the Natural Science Foundation of Hebei Province(F2016201142F2016201187)the Natural Social Foundation of Hebei Province(HB15TQ015)the Science Research Project of Hebei Province(QN2016085ZC2016040)the Natural Science Foundation of Hebei University(2014-303)
文摘Fusion methods based on multi-scale transforms have become the mainstream of the pixel-level image fusion. However,most of these methods cannot fully exploit spatial domain information of source images, which lead to the degradation of image.This paper presents a fusion framework based on block-matching and 3D(BM3D) multi-scale transform. The algorithm first divides the image into different blocks and groups these 2D image blocks into 3D arrays by their similarity. Then it uses a 3D transform which consists of a 2D multi-scale and a 1D transform to transfer the arrays into transform coefficients, and then the obtained low-and high-coefficients are fused by different fusion rules. The final fused image is obtained from a series of fused 3D image block groups after the inverse transform by using an aggregation process. In the experimental part, we comparatively analyze some existing algorithms and the using of different transforms, e.g. non-subsampled Contourlet transform(NSCT), non-subsampled Shearlet transform(NSST), in the 3D transform step. Experimental results show that the proposed fusion framework can not only improve subjective visual effect, but also obtain better objective evaluation criteria than state-of-the-art methods.
文摘Medical image fusion has been developed as an efficient assistive technology in various clinical applications such as medical diagnosis and treatment planning.Aiming at the problem of insufficient protection of image contour and detail information by traditional image fusion methods,a new multimodal medical image fusion method is proposed.This method first uses non-subsampled shearlet transform to decompose the source image to obtain high and low frequency subband coefficients,then uses the latent low rank representation algorithm to fuse the low frequency subband coefficients,and applies the improved PAPCNN algorithm to fuse the high frequency subband coefficients.Finally,based on the automatic setting of parameters,the optimization method configuration of the time decay factorαe is carried out.The experimental results show that the proposed method solves the problems of difficult parameter setting and insufficient detail protection ability in traditional PCNN algorithm fusion images,and at the same time,it has achieved great improvement in visual quality and objective evaluation indicators.
基金supported by the National Natural Science Foundation of China (61501260)the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX17_0776)the Research Project of Nanjing University of Posts and Telecommunications (NY218089&NY219076)
文摘In order to improve the visibility and contrast of low-light images and better preserve the edge and details of images,a new low-light color image enhancement algorithm is proposed in this paper.The steps of the proposed algorithm are described as follows.First,the image is converted from the red,green and blue(RGB)color space to the hue,saturation and value(HSV)color space,and the histogram equalization(HE)is performed on the value component.Next,non-subsampled shearlet transform(NSST)is used on the value component to decompose the image into a low frequency sub-band and several high frequency sub-bands.Then,the low frequency sub-band and high frequency sub-bands are enhanced respectively by Gamma correction and improved guided image filtering(IGIF),and the enhanced value component is formed by inverse NSST transform.Finally,the image is converted back to the RGB color space to obtain the enhanced image.Experimental results show that the proposed method not only significantly improves the visibility and contrast,but also better preserves the edge and details of images.