The focusing and the stable transport of an intense elliptic sheet electron beam in a uniform magnetic field are investigated thoroughly by using the macroscopic cold-fluid model and the single-particle orbit theory.T...The focusing and the stable transport of an intense elliptic sheet electron beam in a uniform magnetic field are investigated thoroughly by using the macroscopic cold-fluid model and the single-particle orbit theory.The results indicate that the envelopes and the tilted angles of the sheet electron beam obtained by the two theories are consistent.The single-particle orbit theory is more accurate due to its treatment of the space-charge fields in a rectangular drift tube.The macroscopic cold-fluid model describes the collective transport process in order to provide detailed information about the beam dynamics,such as beam shape,density,and velocity profile.The tilt of the elliptic sheet beam in a uniform magnetic field is carefully studied and demonstrated.The results presented in this paper provide two complete theories for systemically discussing the transport of the sheet beam and are useful for understanding and guiding the practical engineering design of electron optics systems in high power vacuum electronic devices.展开更多
This paper investigates the diocotron instability of an infinitely wide relativistic sheet electron beam in conducting wMls propagating through a uniform magnetic field by using the macroscopic cold-fluid model theory...This paper investigates the diocotron instability of an infinitely wide relativistic sheet electron beam in conducting wMls propagating through a uniform magnetic field by using the macroscopic cold-fluid model theory. Assuming low- frequency perturbations with long axial wavelengths, the eigenvalue equation and the dispersion relation are acquired for a sheet electron beam with sharp boundary profile and uniform density. The results presented in this paper has developed the use of the macroscopic cold-fluid model theory by extending the parameter of the electron cyclotron frequency ωc to a wider usage range, which is restricted to be much larger than the plasma frequency ωp in the previous research work. Theoretical analyses and numerical calculations indicate that the transport of the sheet electron beam will be completely stabilized by augmenting the normalized beam thickness to a conductor gap larger than a threshold λb, which is greatly dependent on the parameter ωc/ωp. The larger ωc/ωp is, the smaller λb will be needed. Moreover, the system parameters, including the wave number kx of the perturbations and the relativistic mass factor γb, will also influence the growth rate of diocotron instability obviously.展开更多
A terahertz dual-mode extended interaction oscillator (EIO) driven by a pseudospark-sourced sheet electron beam (SEB) was presented.The major advantages of the newly developed circuit include 1) high-density SEB inter...A terahertz dual-mode extended interaction oscillator (EIO) driven by a pseudospark-sourced sheet electron beam (SEB) was presented.The major advantages of the newly developed circuit include 1) high-density SEB interacting with the TM_(11) and TM_(31) modes,respectively,and 2) high output power of over 1 kW at the subterahertz frequency range.Two different types of 2π modes and their output characteristics were studied,and the circuit was optimized to ensure efficient outputs of two standing-wave modes.The three-dimensional (3D) particle-in-cell (PIC) simulation predicts the maximum output power of 1.3 kW with the 3-dB bandwidth of ~0.5 GHz at 303 GHz when operating at the TM_(11)mode,and 3.18 kW with the 3-dB bandwidth of ~0.85 GHz at 364 GHz when operating at the TM_(31)mode.展开更多
This paper reports research into the microstructures and properties of electron beam welding (EBW) joints of a Ti alloy sheet. To control the TC4 sheet joint formation during electron beam welding is not an easy tas...This paper reports research into the microstructures and properties of electron beam welding (EBW) joints of a Ti alloy sheet. To control the TC4 sheet joint formation during electron beam welding is not an easy task. However, the electron beam current has a significant influence on joint formation and a good appearance of a T-joint can be obtained by increasing the heat input and using the electron beam scan method. It was found that all acicular martensite in the fusion zone (FZ) consisted primarily of α' phase titanium, with some β phase present. Grain coarsening occurred in the heat-affected zone (HAZ) due to transformation of the β phase. Butt joints possessed high strength, hardness of the fusion zone, and the heataffected zone of these joints performed better than that of the parent metal. The highest shear strength of T-joint was 615 MPa and the fracture mechanism was a gliding fracture.展开更多
Ti-Al thin sheet with dimension of 450 mm×450 mm×0.2 mm was prepared by electron beam physical vapor deposition(EB-PVD) technology. The surface and cross-section pattern of as-deposited sample were studied b...Ti-Al thin sheet with dimension of 450 mm×450 mm×0.2 mm was prepared by electron beam physical vapor deposition(EB-PVD) technology. The surface and cross-section pattern of as-deposited sample were studied by SEM and AFM,and then the composition and phase were analysed by XRD and EPMA. Finally,the effect on deposit by re-evaporation of Al was explored by calculating the ratio of re-evaporating capacity with depositing capacity of Al on the substrate. The results indicate that the evaporation process with Nb addition into the molten pool makes it earlier to reach the steady-state. The existing equiaxed crystal and columnar crystal along the cross-sectional may be caused by the transformation latent heat released during the transition course of atoms from gaseous state to solid state. The effect on deposit by re-evaporation of Al can be neglected because the re-evaporating capacity of Al is far below that of the depositing capacity.展开更多
The TiAl-based alloys sheet with 150 mm×100 mm×0.4 mm and the TiAl/Nb laminated composites with 150 mm×100 mm×0.2 mm were fabricated by using electron beam-physical vapor deposition(EB-PVD) method,...The TiAl-based alloys sheet with 150 mm×100 mm×0.4 mm and the TiAl/Nb laminated composites with 150 mm×100 mm×0.2 mm were fabricated by using electron beam-physical vapor deposition(EB-PVD) method, respectively. The microstructure and properties of the sheet were investigated by AFM, SEM and EDS. The results show that the TiAl based alloys sheet has a good surface quality, and its microstructure is columnar crystal. The component of the alloys indicates a regular and periodical gradient change which leads to the spontaneous delamination along the normal direction of substrate. In the TiAl/Nb laminated composites alternating overlaid by TiAl of 24 layers and Nb of 23 layers, the interface of each layer evenly distributed throughout the cross-section is transparent, and the interlayer spacing is about 8μm. The component of TiAl layers also changes regularly along the normal direction of substrate, but no delamination phenomenon is found. The TiAl/Nb laminated composites have better ductility than the TiAl-based alloys sheet.展开更多
TiAl-based alloys sheet with thickness of 0.3-0.4 mm as well as dimension of 150 mm×100 mm was fabricated successfully by using electron beam-physical vapor deposition(EB-PVD) method. The microscopic morphology a...TiAl-based alloys sheet with thickness of 0.3-0.4 mm as well as dimension of 150 mm×100 mm was fabricated successfully by using electron beam-physical vapor deposition(EB-PVD) method. The microscopic morphology and phase composition of specimens in various states were analyzed by atomic force microscope(AFM), scanning electron microscope(SEM) and X-ray diffractometer(XRD), respectively. The results indicate that the as-deposited TiAl-based alloys sheet has good surface quality and is composed of γ, α2 and τ phase. There is natural delamination inside the sheet, of which the microstructure is columnar crystal, and the component shows a gradient change along the normal direction of substrate. After the vacuum hot pressing treatment and subsequent homogenization treatment, the columnar crystal transforms into the coarse fully lamellar microstructure, the delamination phenomenon and τ phase disappear, α2 phase decreases obviously, and the composition tends to uniformization.展开更多
Large-scale Ni-based superalloy sheet was prepared by electron beam physical vapour deposition. Microstructures and micropores of as-deposited and heat treated superalloy sheets were studied by scanning electron micro...Large-scale Ni-based superalloy sheet was prepared by electron beam physical vapour deposition. Microstructures and micropores of as-deposited and heat treated superalloy sheets were studied by scanning electron microscope, atomic force microscope, and optical microscope. The results show that the as-deposited superalloy sheet is mainly composed of columnar grain, whose major axes are parallel to the normal line of the sheet. The average diameter of crystalline grains in minor axis direction is about 300nm. After heat treatment, the superalloy sheet consists of equiaxed grains, the nanopores with high interfacial energy gather and form fewer pores with larger size, and there is notable increase in toughness.展开更多
对TC4钛合金薄板进行高真空电子束焊接,结合室温拉伸试验和硬度试验,研究了焊接接头的显微组织及性能。结果表明,焊缝和热影响区的组织内部均析出了针状的α'马氏体,焊缝中心单位面积内析出的该相比热影响区较多。随着焊接速度的增大,...对TC4钛合金薄板进行高真空电子束焊接,结合室温拉伸试验和硬度试验,研究了焊接接头的显微组织及性能。结果表明,焊缝和热影响区的组织内部均析出了针状的α'马氏体,焊缝中心单位面积内析出的该相比热影响区较多。随着焊接速度的增大,接头抗拉强度和断面收缩率均先增大后减小。焊接接头的显微硬度分布为距离焊缝中心越远,硬度越小。焊缝的显微硬度比热影响区硬度平均高25~30 HV,热影响区的显微硬度比母材硬度平均高20~30HV。在电子束流为17 m A、聚焦电流为498 m A、焊接速度为1000 mm/min下焊接,焊接效果较好。展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60501019,10775139 and 60971073)
文摘The focusing and the stable transport of an intense elliptic sheet electron beam in a uniform magnetic field are investigated thoroughly by using the macroscopic cold-fluid model and the single-particle orbit theory.The results indicate that the envelopes and the tilted angles of the sheet electron beam obtained by the two theories are consistent.The single-particle orbit theory is more accurate due to its treatment of the space-charge fields in a rectangular drift tube.The macroscopic cold-fluid model describes the collective transport process in order to provide detailed information about the beam dynamics,such as beam shape,density,and velocity profile.The tilt of the elliptic sheet beam in a uniform magnetic field is carefully studied and demonstrated.The results presented in this paper provide two complete theories for systemically discussing the transport of the sheet beam and are useful for understanding and guiding the practical engineering design of electron optics systems in high power vacuum electronic devices.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60501019, 10775139, and 60971073)
文摘This paper investigates the diocotron instability of an infinitely wide relativistic sheet electron beam in conducting wMls propagating through a uniform magnetic field by using the macroscopic cold-fluid model theory. Assuming low- frequency perturbations with long axial wavelengths, the eigenvalue equation and the dispersion relation are acquired for a sheet electron beam with sharp boundary profile and uniform density. The results presented in this paper has developed the use of the macroscopic cold-fluid model theory by extending the parameter of the electron cyclotron frequency ωc to a wider usage range, which is restricted to be much larger than the plasma frequency ωp in the previous research work. Theoretical analyses and numerical calculations indicate that the transport of the sheet electron beam will be completely stabilized by augmenting the normalized beam thickness to a conductor gap larger than a threshold λb, which is greatly dependent on the parameter ωc/ωp. The larger ωc/ωp is, the smaller λb will be needed. Moreover, the system parameters, including the wave number kx of the perturbations and the relativistic mass factor γb, will also influence the growth rate of diocotron instability obviously.
基金the National Natural Science Foundation of China under Grant No.61771096the Fundamental Research Funds for the Central Universities under Grant No.ZYGX2016J059+1 种基金the National Basic Research Program of China under Grant No.2013CB933603the UK Engineering and Physical Sciences Research Council(EPSRC)under Grant No.EP/S00968X/1。
文摘A terahertz dual-mode extended interaction oscillator (EIO) driven by a pseudospark-sourced sheet electron beam (SEB) was presented.The major advantages of the newly developed circuit include 1) high-density SEB interacting with the TM_(11) and TM_(31) modes,respectively,and 2) high output power of over 1 kW at the subterahertz frequency range.Two different types of 2π modes and their output characteristics were studied,and the circuit was optimized to ensure efficient outputs of two standing-wave modes.The three-dimensional (3D) particle-in-cell (PIC) simulation predicts the maximum output power of 1.3 kW with the 3-dB bandwidth of ~0.5 GHz at 303 GHz when operating at the TM_(11)mode,and 3.18 kW with the 3-dB bandwidth of ~0.85 GHz at 364 GHz when operating at the TM_(31)mode.
基金Supported by National Basic Research Program (2010CB731704) and National Natural Science Foundation of China(No. 51075089).
文摘This paper reports research into the microstructures and properties of electron beam welding (EBW) joints of a Ti alloy sheet. To control the TC4 sheet joint formation during electron beam welding is not an easy task. However, the electron beam current has a significant influence on joint formation and a good appearance of a T-joint can be obtained by increasing the heat input and using the electron beam scan method. It was found that all acicular martensite in the fusion zone (FZ) consisted primarily of α' phase titanium, with some β phase present. Grain coarsening occurred in the heat-affected zone (HAZ) due to transformation of the β phase. Butt joints possessed high strength, hardness of the fusion zone, and the heataffected zone of these joints performed better than that of the parent metal. The highest shear strength of T-joint was 615 MPa and the fracture mechanism was a gliding fracture.
基金Project(NCET2004) supported by the Program for New Century Excellent Talents in University, China
文摘Ti-Al thin sheet with dimension of 450 mm×450 mm×0.2 mm was prepared by electron beam physical vapor deposition(EB-PVD) technology. The surface and cross-section pattern of as-deposited sample were studied by SEM and AFM,and then the composition and phase were analysed by XRD and EPMA. Finally,the effect on deposit by re-evaporation of Al was explored by calculating the ratio of re-evaporating capacity with depositing capacity of Al on the substrate. The results indicate that the evaporation process with Nb addition into the molten pool makes it earlier to reach the steady-state. The existing equiaxed crystal and columnar crystal along the cross-sectional may be caused by the transformation latent heat released during the transition course of atoms from gaseous state to solid state. The effect on deposit by re-evaporation of Al can be neglected because the re-evaporating capacity of Al is far below that of the depositing capacity.
基金Projects(90205034, 90405016) supported by the National Natural Science Foundation of China
文摘The TiAl-based alloys sheet with 150 mm×100 mm×0.4 mm and the TiAl/Nb laminated composites with 150 mm×100 mm×0.2 mm were fabricated by using electron beam-physical vapor deposition(EB-PVD) method, respectively. The microstructure and properties of the sheet were investigated by AFM, SEM and EDS. The results show that the TiAl based alloys sheet has a good surface quality, and its microstructure is columnar crystal. The component of the alloys indicates a regular and periodical gradient change which leads to the spontaneous delamination along the normal direction of substrate. In the TiAl/Nb laminated composites alternating overlaid by TiAl of 24 layers and Nb of 23 layers, the interface of each layer evenly distributed throughout the cross-section is transparent, and the interlayer spacing is about 8μm. The component of TiAl layers also changes regularly along the normal direction of substrate, but no delamination phenomenon is found. The TiAl/Nb laminated composites have better ductility than the TiAl-based alloys sheet.
基金Project(90405016) supported by the National Natural Science Foundation of China
文摘TiAl-based alloys sheet with thickness of 0.3-0.4 mm as well as dimension of 150 mm×100 mm was fabricated successfully by using electron beam-physical vapor deposition(EB-PVD) method. The microscopic morphology and phase composition of specimens in various states were analyzed by atomic force microscope(AFM), scanning electron microscope(SEM) and X-ray diffractometer(XRD), respectively. The results indicate that the as-deposited TiAl-based alloys sheet has good surface quality and is composed of γ, α2 and τ phase. There is natural delamination inside the sheet, of which the microstructure is columnar crystal, and the component shows a gradient change along the normal direction of substrate. After the vacuum hot pressing treatment and subsequent homogenization treatment, the columnar crystal transforms into the coarse fully lamellar microstructure, the delamination phenomenon and τ phase disappear, α2 phase decreases obviously, and the composition tends to uniformization.
文摘Large-scale Ni-based superalloy sheet was prepared by electron beam physical vapour deposition. Microstructures and micropores of as-deposited and heat treated superalloy sheets were studied by scanning electron microscope, atomic force microscope, and optical microscope. The results show that the as-deposited superalloy sheet is mainly composed of columnar grain, whose major axes are parallel to the normal line of the sheet. The average diameter of crystalline grains in minor axis direction is about 300nm. After heat treatment, the superalloy sheet consists of equiaxed grains, the nanopores with high interfacial energy gather and form fewer pores with larger size, and there is notable increase in toughness.
基金supported by National Natural Science Foundation of China(60532010 and 60601007)by Specialized Research Fundfor the Doctoral Programof Higher Education(20070614041)
文摘对TC4钛合金薄板进行高真空电子束焊接,结合室温拉伸试验和硬度试验,研究了焊接接头的显微组织及性能。结果表明,焊缝和热影响区的组织内部均析出了针状的α'马氏体,焊缝中心单位面积内析出的该相比热影响区较多。随着焊接速度的增大,接头抗拉强度和断面收缩率均先增大后减小。焊接接头的显微硬度分布为距离焊缝中心越远,硬度越小。焊缝的显微硬度比热影响区硬度平均高25~30 HV,热影响区的显微硬度比母材硬度平均高20~30HV。在电子束流为17 m A、聚焦电流为498 m A、焊接速度为1000 mm/min下焊接,焊接效果较好。