期刊文献+
共找到15,939篇文章
< 1 2 250 >
每页显示 20 50 100
Application of an Artificial Neural Network Method for the Prediction of the Tube-Side Fouling Resistance in a Shell-And-Tube Heat Exchanger 被引量:1
1
作者 Rania Jradi Christophe Marvillet Mohamed-Razak Jeday 《Fluid Dynamics & Materials Processing》 EI 2022年第5期1511-1519,共9页
The accumulation of undesirable deposits on the heat exchange surface represents a critical issue in industrial heat exchangers.Taking experimental measurements of the fouling is relatively difficult and,often,this me... The accumulation of undesirable deposits on the heat exchange surface represents a critical issue in industrial heat exchangers.Taking experimental measurements of the fouling is relatively difficult and,often,this method does not lead to precise results.To overcome these problems,in the present study,a new approach based on an Artificial Neural Network(ANN)is used to predict the fouling resistance as a function of specific measurable variables in the phosphoric acid concentration process.These include:the phosphoric acid inlet and outlet temperatures,the steam temperature,the phosphoric acid density,the phosphoric acid volume flow rate circulating in the loop.Some statistical accuracy indices are employed simultaneously to justify the interrelation between these independent variables and the fouling resistance and to select the best training algorithm allowing the determination of the optimal number of hidden neurons.In particular,the BFGS quasi-Newton back-propagation approach is found to be the most performing of the considered training algorithms.Furthermore,the best topology ANN for the shell and tube heat exchanger is obtained with a network consisting of one hidden layer with 13 neurons using a tangent sigmoid transfer function for the hidden and output layers.This model predicts the experimental values of the fouling resistance with AARD%=0.065,MSE=2.168×10^(−11),RMSE=4.656×10^(−6)and r^(2)=0.994. 展开更多
关键词 Artificial neural network fouling resistance phosphoric acid concentration process shell-and-tube heat exchanger
下载PDF
Mathematical Modelling of Operating Temperature Variations of Shell-and-Tube Heat Exchanger (10-E-01)
2
作者 Romokere Isotuk Uzono Ojong Elias Ojong 《World Journal of Engineering and Technology》 2022年第2期422-433,共12页
The technique of modeling operating temperature variations of shell-and-tube heat exchanger 10-E-01 of kerosene-crude oil streams of Port Harcourt refinery crude distillation unit is presented in this research. A... The technique of modeling operating temperature variations of shell-and-tube heat exchanger 10-E-01 of kerosene-crude oil streams of Port Harcourt refinery crude distillation unit is presented in this research. Appropriate first-order model equations were developed applying principles of energy balance. The differential equations developed for the process streams which exchanged heat was evaluated numerically to predict the temperature variations as a function of time. The relevant parameters associated with typical heat exchanger works were calculated using plant data of 10-E-02. The model strives to predict the final kerosene temperature from 488 to 353.6 K. While the crude oil streams temperature rose from 313 to 353.6 K. The developed model enables the operator to predict the final temperature at the kerosene hydro-treating unit and thereby prevent regular emergency shutdowns due to excessive temperature rise. 展开更多
关键词 shell-and-tube heat exchanger 10-E-01 MODELING Kerosene-Crude Streams Differential Equations
下载PDF
CFD-Based Optimization of a Shell-and-Tube Heat Exchanger
3
作者 Juanjuan Wang Jiangping Nan Yanan Wang 《Fluid Dynamics & Materials Processing》 EI 2023年第11期2761-2775,共15页
The main objective of this study is the technical optimization of a Shell-and-Tube Heat Exchanger(STHE).In order to do so,a simulation model is introduced that takes into account the related gas-phase circulation.Then... The main objective of this study is the technical optimization of a Shell-and-Tube Heat Exchanger(STHE).In order to do so,a simulation model is introduced that takes into account the related gas-phase circulation.Then,simulation verification experiments are designed in order to validate the model.The results show that the tem-peraturefield undergoes strong variations in time when an inlet wind speed of 6 m/s is considered,while the heat transfer error reaches a minimum of 5.1%.For an inlet velocity of 9 m/s,the heat transfer drops to the lowest point,while the heat transfer error reaches a maximum,i.e.,9.87%.The pressure drop increasesfirst and then decreases with an increase in the wind speed and reaches a maximum of 819 Pa under the 9 m/s wind speed con-dition.Moreover,the pressure drops,and the heat transfer coefficient increases with the Reynolds number. 展开更多
关键词 heat exchanger AERODYNAMICS engineeringfluid mechanics TUBE heat transmission heat transfer model numerical simulation
下载PDF
Numerical Simulation of the Shell-and-Tube Heat Exchanger:Influence of the Lower Flows and the Baffles on a Fluid Dynamics
4
作者 Sebastiao Josédos Santos Filho Josedite Saraiva de Souza Antonio Gilson Barbosa de Lima 《Advances in Chemical Engineering and Science》 2017年第4期349-361,共13页
This project proposes the numerical reproduction development of the water flow in a shell-and-tube heat exchanger 2:1 according to the CLASS C TEMA standard (for moderate operation conditions, with commercial applicat... This project proposes the numerical reproduction development of the water flow in a shell-and-tube heat exchanger 2:1 according to the CLASS C TEMA standard (for moderate operation conditions, with commercial application). With baffles in aluminum and copper tube for the cold fluid flow, the shell is in acrylic, and with thermal analysis efficiencies with regard to the presence or not of the baffles, that is to analyze the efficiency with only, the tubes and the shell and soon after the analysis with tubes and baffles. Heat exchangers are widely used equipment on an industrial and commercial scale, the application of these equipments on an industrial scale represents innovative processing solutions reflecting the processes efficiency, producing significant savings and lower cost, supporting the business success, and consequently offering opportunities, social responsibility, which are the pillars of sustainability. For the development of this work the methodology was used to calculate effectiveness, following the design parameters and contour conditions, it was analyzed the fluids behavior in the shell and the tube, through computational fluid dynamics (CFD) using the software ANSYS CFX 15.0. The results were compared with Excel generated worksheets calculated using the existing equations and correlations. 展开更多
关键词 heat exchanger CFD Baffles ANSYS CFX
下载PDF
Prediction of Heat Transfer Rates for Shell-and-Tube Heat Exchangers by Artificial Neural Networks Approach 被引量:2
5
作者 Qiuwang WANG Gongnan XIE Ming ZENG Laiqin LUO 《Journal of Thermal Science》 SCIE EI CAS CSCD 2006年第3期257-262,共6页
This work used artificial neural network(ANN)to predict the heat transfer rates of shell-and-tube heatexchangers with segmental baffles or continuous helical baffles,based on limited experimental data.The BackPropagat... This work used artificial neural network(ANN)to predict the heat transfer rates of shell-and-tube heatexchangers with segmental baffles or continuous helical baffles,based on limited experimental data.The BackPropagation (BP) algorithm was used in training the networks.Different network configurations were alsostudied.The deviation between the predicted results and experimental data was less than 2%.Comparison withcorrelation for prediction shows ANN superiority.It is recommended that ANN can be easily used to predict theperformances of thermal systems in engineering applications,especially to model heat exchangers for heattransfer analysis. 展开更多
关键词 heat transfer rate Artificial Neural Network shell-and-tube heat exchanger back propagation
原文传递
Flow mechanism and heat transfer enhancement in longitudinal-flow tube bundle of shell-and-tube heat exchanger 被引量:18
6
作者 Wei Liu ZhiChun Liu +1 位作者 YingShuang Wang SuYi Huang 《Science China(Technological Sciences)》 SCIE EI CAS 2009年第10期2952-2959,共8页
The flow disturbance and heat transfer mechanism in the tube bundle of rod baffle shell-and-tube heat exchanger were analyzed, on the basis of which and combined with the concept of heat transfer enhancement in the co... The flow disturbance and heat transfer mechanism in the tube bundle of rod baffle shell-and-tube heat exchanger were analyzed, on the basis of which and combined with the concept of heat transfer enhancement in the core flow, a new type of shell-and-tube heat exchanger with combination of rod and van type spoiler was designed. Corresponding mathematical and physical models on the shell side about the new type heat exchanger were established, and fluid flow and heat transfer characteristics were numerically analyzed. The simulation results showed that heat transfer coefficient of the new type of heat exchanger approximated to that of rod baffle heat exchanger, but flow pressure drop was much less than the latter, indicating that comprehensive performance of the former is superior to that of the latter. Compared with rod baffle heat exchanger, heat transfer coefficient of the heat exchanger under investigation is higher under same pressure drop, especially under the high Reynolds numbers. 展开更多
关键词 shell-and-tube heat exchanger tube BUNDLE rod BAFFLE vane-type SPOILER core FLOW heat transfer enhancement
原文传递
Characteristics of flow and heat transfer of shell-and-tube heat exchangers with overlapped helical baffles
7
作者 Tingting DU Wenjing DU 《Frontiers of Engineering Management》 2019年第1期70-77,共8页
The characteristics of flow and heat transfer of shell-and-tube heat exchangers with overlapped helical baffles (STHXsHB) were illustrated through a theoretical analysis and numerical simulation. The ideal helical flo... The characteristics of flow and heat transfer of shell-and-tube heat exchangers with overlapped helical baffles (STHXsHB) were illustrated through a theoretical analysis and numerical simulation. The ideal helical flow model was constructed to demonstrate parts of the flow characteristics of the STHXsHB, providing theoretical evidence of short-circuit and back flows in a triangular zone. The numerical simulation was adopted to describe the characteristics of helical, leakage, and bypass streams. In a fully developed section, the distribution of velocity and wall heat transfer coefficient has a similar trend, which presents the effect of leakage and bypass streams. The short-circuit flow accelerates the axial velocity of the flow through the triangular zone. Moreover, the back flow enhances the local heat transfer and causes the ascent of flow resistance. This study shows the detailed features of helical flow in STHXsHB, which can inspire a reasonable optimization on the shell-side structure. 展开更多
关键词 heat exchanger overlapped HELICAL BAFFLE TRIANGULAR ZONE HELICAL flow
原文传递
Research on shell-side heat and mass transfer with multi-component in LNG spiral-wound heat exchanger under sloshing conditions
8
作者 Xue-Ping Du Guang-Lei Yu +3 位作者 Ya-Cheng Xu Zhi-Jie Chen Nai-Liang Li Huan-Guang Wang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1333-1345,共13页
The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper stud... The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper studied the shell-side heat and mass transfer characteristics of vapor-liquid two-phase mixed refrigerants in an SWHE by combining a multi-component model in FLUENT software with a customized multicomponent mass transfer model. Besides, the mathematical model under the sloshing condition was obtained through mathematical derivation, and the corresponding UDF code was loaded into FLUENT as the momentum source term. The results under the sloshing conditions were compared with the relevant parameters under the steady-state condition. The shell-side heat and mass transfer characteristics of the SWHE were investigated by adjusting the component ratio and other working conditions. It was found that the sloshing conditions enhance the heat transfer performance and sometimes have insignificant effects. The sloshing condition is beneficial to reduce the flow resistance. The comprehensive performance of multi-component refrigerants has been improved and the improvement is more significant under sloshing conditions, considering both the heat transfer and pressure drop.These results will provide theoretical support for the research and design of multi-component heat and mass transfer enhancement of LNG SWHE under ocean sloshing conditions. 展开更多
关键词 Spiral-wound heat exchanger Sloshing conditions Two-phase flow MULTI-COMPONENT heat and mass transfer
下载PDF
Topology Optimization of Two Fluid Heat Transfer Problems for Heat Exchanger Design
9
作者 Kun Yan Yunyu Wang Jun Yan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1949-1974,共26页
Topology optimization of thermal-fluid coupling problems has received widespread attention.This article proposes a novel topology optimization method for laminar two-fluid heat exchanger design.The proposed method uti... Topology optimization of thermal-fluid coupling problems has received widespread attention.This article proposes a novel topology optimization method for laminar two-fluid heat exchanger design.The proposed method utilizes an artificial density field to create two permeability interpolation functions that exhibit opposing trends,ensuring separation between the two fluid domains.Additionally,a Gaussian function is employed to construct an interpolation function for the thermal conductivity coefficient.Furthermore,a computational program has been developed on the OpenFOAM platform for the topology optimization of two-fluid heat exchangers.This program leverages parallel computing,significantly reducing the time required for the topology optimization process.To enhance computational speed and reduce the number of constraint conditions,we replaced the conventional pressure drop constraint condition in the optimization problem with a pressure inlet/outlet boundary condition.The 3D optimization results demonstrate the characteristic features of a surface structure,providing valuable guidance for designing heat exchangers that achieve high heat exchange efficiency while minimizing excessive pressure loss.At the same time,a new structure appears in large-scale topology optimization,which proves the effectiveness and stability of the topology optimization program written in this paper in large-scale calculation. 展开更多
关键词 Topology optimization two fluid heat exchanger OPENFOAM large scale
下载PDF
Combining reinforcement learning with mathematical programming:An approach for optimal design of heat exchanger networks
10
作者 Hui Tan Xiaodong Hong +4 位作者 Zuwei Liao Jingyuan Sun Yao Yang Jingdai Wang Yongrong Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期63-71,共9页
Heat integration is important for energy-saving in the process industry.It is linked to the persistently challenging task of optimal design of heat exchanger networks(HEN).Due to the inherent highly nonconvex nonlinea... Heat integration is important for energy-saving in the process industry.It is linked to the persistently challenging task of optimal design of heat exchanger networks(HEN).Due to the inherent highly nonconvex nonlinear and combinatorial nature of the HEN problem,it is not easy to find solutions of high quality for large-scale problems.The reinforcement learning(RL)method,which learns strategies through ongoing exploration and exploitation,reveals advantages in such area.However,due to the complexity of the HEN design problem,the RL method for HEN should be dedicated and designed.A hybrid strategy combining RL with mathematical programming is proposed to take better advantage of both methods.An insightful state representation of the HEN structure as well as a customized reward function is introduced.A Q-learning algorithm is applied to update the HEN structure using theε-greedy strategy.Better results are obtained from three literature cases of different scales. 展开更多
关键词 heat exchanger network Reinforcement learning Mathematical programming Process design
下载PDF
Performance analysis of deep borehole heat exchangers for decarbonization of heating systems
11
作者 Andreas E.D.Lund 《Deep Underground Science and Engineering》 2024年第3期349-357,共9页
Meeting the climate change mitigation targets will require a substantial shift from fossil to clean fuels in the heating sector.Heat pumps with deep borehole exchangers are a promising solution to reduce emissions.Her... Meeting the climate change mitigation targets will require a substantial shift from fossil to clean fuels in the heating sector.Heat pumps with deep borehole exchangers are a promising solution to reduce emissions.Here the thermal behavior of deep borehole exchangers(DBHEs)ranging from 1 to 2 km was analyzed for various heat flow profiles.A strong correlation between thermal energy extraction and power output from DBHEs was found,also influenced by the heating profile employed.Longer operating time over the year typically resulted in higher energy production,while shorter one yielded higher average thermal power output,highlighting the importance of the choice of heating strategy and system design for optimal performance of DBHEs.Short breaks in operation for regenerating the borehole,for example,with waste heat,proved to be favorable for the performance yielding an overall heat output close to the same as with continuous extraction of heat.The results demonstrate the usefulness of deep boreholes for dense urban areas with less available space.As the heat production from a single DBHE in Finnish conditions ranges from half up to even a few GWh a year,the technology is best suitable for larger heat loads. 展开更多
关键词 clean energy deep borehole exchangers energy transition geothermal heat ground-coupled heat pump
下载PDF
Optimization of Finned-Tube Heat Exchanger in a Gravity-Assisted Separated Heat Pipe
12
作者 Yangyiming Rong Weitao Su +3 位作者 Shuai Wang Bowen Du Jianjian Wei Shaozhi Zhang 《Frontiers in Heat and Mass Transfer》 EI 2024年第4期1209-1229,共21页
Finned-tube heat exchanger(FTHE)is often used as an evaporator in commercial products of separated heat pipe(SHP).The working conditions of FTHE in gravity-assisted SHP are significantly different from those working i... Finned-tube heat exchanger(FTHE)is often used as an evaporator in commercial products of separated heat pipe(SHP).The working conditions of FTHE in gravity-assisted SHP are significantly different from those working in refrigerators and air conditioners.Although FTHE is widely used in commercial products of SHP,previous research on its characteristics is very limited.In this paper,a mathematical model for a SHP with FTHE as the evaporator and plate heat exchanger as the condenser is established and verified with experiments.Parametric analyses are carried out to investigate the influences of evaporator design parameters:air inlet velocity,number of tube rows,tube diameter,and fin pitch.With the increasing of air velocity,number of tube rows and tube diameter,and the decreasing of fin pitch,the heat transfer rate increases,while the energy efficiency ratio(EER)decreases monotonically.Using the total cost of the ten-year life cycle as the performance index,the structure parameters of the evaporator with a given heat transfer rate are optimized by the method of orthogonal experimental design.It is found that the total cost can differ as large as nearly ten times between groups.Among the three factors investigated,the number of tube rows has a significant impact on the total cost of the evaporator.With more tube rows,the total cost will be less.The impacts of fin pitch and tube diameter are insignificant.These results are of practical importance for the engineering design of FTHE in gravity-assisted SHP. 展开更多
关键词 Separated heat pipe finned-tube heat exchanger GRAVITY OPTIMIZATION
下载PDF
Numerical Studies on Thermal and Hydrodynamic Characteristics of LNG in Helically Coiled Tube-in-Tube Heat Exchangers
13
作者 Fayi Yan Xuejian Pei +1 位作者 He Lu Shuzhen Zong 《Frontiers in Heat and Mass Transfer》 EI 2024年第1期287-304,共18页
As compact and efficient heat exchange equipment,helically coiled tube-in-tube heat exchangers(HCTT heat exchangers)are widely used in many industrial processes.However,the thermal-hydraulic research of liquefied natu... As compact and efficient heat exchange equipment,helically coiled tube-in-tube heat exchangers(HCTT heat exchangers)are widely used in many industrial processes.However,the thermal-hydraulic research of liquefied natural gas(LNG)as the working fluid inHCTT heat exchangers is rarely reported.In this paper,the characteristics of HCTT heat exchangers,in which LNG flows in the inner tube and ethylene glycol-water solution flows in the outer tube,are studied by numerical simulations.The influences of heat transfer characteristics and pressure drops of the HCTT heat transfers are studied by changing the initial flow velocity,the helical middle diameter,and the helical pitch.The results indicate that different initial flow velocities in the inner tube and the outer tube of the HCTT heat exchanger have little influence on the secondary flow of the fluid in the helical tubes,and the overall flow characteristics tend to be stable.The smaller helical middle diameter of the HCTT heat exchanger leads to the shorter fluid flow length,the smaller resistance along the tubes and the increase of initial pressure under the condition of constant inlet velocity,which promotes the occurrence of secondary flow.The axial flow of fluid promotes the destruction of heat transfer boundary layer and gains strength of the turbulence and heat transfer efficiency.With the increase of the helical pitch of the HCTT heat exchanger,the turbulent intensity and the heat transfer efficiency are also increased.Moreover,the improvement of the flow state of the HCTT exchanger in a longer helical pitch also enhances the heat exchange efficiency. 展开更多
关键词 HCTT heat exchanger LNG helically coil heat transfer coefficient pressure drop
下载PDF
Air-Side Heat Transfer Performance Prediction for Microchannel Heat Exchangers Using Data-Driven Models with Dimensionless Numbers
14
作者 Long Huang Junjia Zou +2 位作者 Baoqing Liu Zhijiang Jin Jinyuan Qian 《Frontiers in Heat and Mass Transfer》 EI 2024年第6期1613-1643,共31页
This study explores the effectiveness of machine learning models in predicting the air-side performance of microchannel heat exchangers.The data were generated by experimentally validated Computational Fluid Dynam-ics... This study explores the effectiveness of machine learning models in predicting the air-side performance of microchannel heat exchangers.The data were generated by experimentally validated Computational Fluid Dynam-ics(CFD)simulations of air-to-water microchannel heat exchangers.A distinctive aspect of this research is the comparative analysis of four diverse machine learning algorithms:Artificial Neural Networks(ANN),Support Vector Machines(SVM),Random Forest(RF),and Gaussian Process Regression(GPR).These models are adeptly applied to predict air-side heat transfer performance with high precision,with ANN and GPR exhibiting notably superior accuracy.Additionally,this research further delves into the influence of both geometric and operational parameters—including louvered angle,fin height,fin spacing,air inlet temperature,velocity,and tube temperature—on model performance.Moreover,it innovatively incorporates dimensionless numbers such as aspect ratio,fin height-to-spacing ratio,Reynolds number,Nusselt number,normalized air inlet temperature,temperature difference,and louvered angle into the input variables.This strategic inclusion significantly refines the predictive capabilities of the models by establishing a robust analytical framework supported by the CFD-generated database.The results show the enhanced prediction accuracy achieved by integrating dimensionless numbers,highlighting the effectiveness of data-driven approaches in precisely forecasting heat exchanger performance.This advancement is pivotal for the geometric optimization of heat exchangers,illustrating the considerable potential of integrating sophisticated modeling techniques with traditional engineering metrics. 展开更多
关键词 Machine learning microchannel heat exchangers heat transfer data-driven modeling computational fluid dynamics
下载PDF
Mathematical Modelling and Design of Helical Coil Heat Exchanger for Production of Hot Air for Fluidized Bed Dryer
15
作者 Iniubong James Uwa Uwem Ekwere Inyang Innocent Oseribho Oboh 《Advances in Chemical Engineering and Science》 CAS 2024年第3期125-136,共12页
In global industrialization, efforts have been made to increase the rate of heat transfer in heat exchanger, minimizing the size of heat exchanger to reduce cost as well as increasing the effectiveness. Helical coil h... In global industrialization, efforts have been made to increase the rate of heat transfer in heat exchanger, minimizing the size of heat exchanger to reduce cost as well as increasing the effectiveness. Helical coil heat exchanger (HCHE) has been proven to be effective in improving heat transfer due to its large surface area. In this study, HCHE was designed to provide hot air needed for fluidized bed drying processes. The HCHE design model was fabricated and evaluated to study the efficiency of the hot air output for a laboratory fluidized bed dryer. The mathematical model for estimation of the final (output) temperature of air, Taf, passing through the HCHE was developed and validated experimentally. The drying of bitter kola particulates was carried out with a drying temperature of 50C 3C and a bed height-to-bed diameter ratio (H/D) of 1.5. The time taken to dry bitter kola particulates to 0.4% moisture content was 1 hour 45 minutes. Hence, HCHE is recommended for use in the production of hot for laboratory-scale fluidized bed dryers. 展开更多
关键词 Helical Coil heat exchanger Fluidized Bed Dryer heat Transfer Output Air Temperature
下载PDF
Numerical Simulation of Liquified Natural Gas Boiling Heat Transfer Characteristics in Helically Coiled Tube-in-Tube Heat Exchangers
16
作者 Fayi Yan He Lu Shijie Feng 《Frontiers in Heat and Mass Transfer》 EI 2024年第5期1493-1514,共22页
Helically coiled tube-in-tube(HCTT)heat exchangers are widely applied to the process technology because of their compactness and higher heat transfer efficiency.HCTT heat exchangers play an important role in liquified... Helically coiled tube-in-tube(HCTT)heat exchangers are widely applied to the process technology because of their compactness and higher heat transfer efficiency.HCTT heat exchangers play an important role in liquified natural gas(LNG)use and cold energy recovery.The heat transfer characteristics,pressure distribution,and degree of vaporization of LNG in HCTT heat exchangers are numerically investigated.By comparing the simulation results of the computational model with existing experimental results,the effectiveness of the computational model is verified.The numerical simulation results show the vapor volume fraction of the HCTT heat exchanger is related to the inlet Reynolds number,inner tube diameters,and helix diameter.The vapor volume fraction increases rapidly from the fourth to the seventh equal division points of the helix tube length.On condition that the inlet Reynolds number is greater than 33500,the pressure drop rate gradually increases.When the magnitude of the vapor volume fraction is below 0.2,the heat transfer coefficient increase rate is greater than that when the vapor volume fraction is above 0.2.The heat exchange efficiency of HCTT heat exchangers increases with the decrease of the ratio of helix diameter to inner tube diameter. 展开更多
关键词 Liquefied natural gas numerical simulation vapor-liquid two-phase flow heat transfer helically coiled tube-intube heat exchanger
下载PDF
Performance Simulation of a Double Tube Heat Exchanger Based on Different Nanofluids by Aspen Plus
17
作者 Fawziea M.Hussien Atheer S.Hassoon Ghaidaa M.Ahmed 《Frontiers in Heat and Mass Transfer》 EI 2024年第1期175-191,共17页
A heat exchanger’s performance depends heavily on the operating fluid’s transfer of heat capacity and thermal conductivity.Adding nanoparticles of high thermal conductivity materials is a significant way to enhance ... A heat exchanger’s performance depends heavily on the operating fluid’s transfer of heat capacity and thermal conductivity.Adding nanoparticles of high thermal conductivity materials is a significant way to enhance the heat transfer fluid’s thermal conductivity.This research used engine oil containing alumina(Al_(2)O_(3))nanoparticles and copper oxide(CuO)to test whether or not the heat exchanger’s efficiency could be improved.To establish the most effective elements for heat transfer enhancement,the heat exchangers thermal performance was tested at 0.05%and 0.1%concentrations for Al_(2)O_(3)and CuO nanoparticles.The simulation results showed that the percentage increase in Nusselt number(Nu)for nanofluid at 0.05%particle concentration compared to pure oil was 9.71%for CuO nanofluids and 6.7%for Al_(2)O_(3)nanofluids.At 0.1%concentration,the enhancement percentage in Nu was approximately 23%for CuO and 18.67%for Al_(2)O_(3)nanofluids,respectively.At a concentration of 0.1%,CuO nanofluid increased the LMTD and overall heat transfer coefficient(U)by 7.24 and 5.91%respectively.Both the overall heat transfer coefficient(U)and the heat transfer coefficient(hn)for CuO nanofluid at a concentration of 0.1%increased by 5.91%and 10.68%,respectively.The effectiveness(εn)of a heat exchanger was increased by roughly 4.09%with the use of CuO nanofluid in comparison to Al_(2)O_(3)at a concentration of 0.1%.The amount of exergy destruction in DTHX goes down as Re and volume fractions go up.Moreover,at 0.05%and 0.1%nanoparticle concentrations,the percentage increase in dimensionless exergy is 10.55%and 13.08%,respectively.Finally,adding the CuO and Al_(2)O_(3)nanoparticles improved the thermal conductivity of the main fluid(oil),resulting in a considerable increase in the thermal performance and rate of heat transfer of a heat exchanger. 展开更多
关键词 NANOFLUID nusselt number exergy dimensionless exergy destruction double tube heat exchanger performance simulation aspen plus
下载PDF
Implementation of heat exchanger performance testing system of heat transfer and flow resistance 被引量:3
18
作者 操瑞兵 陈亚平 +2 位作者 吴嘉峰 董聪 盛艳军 《Journal of Southeast University(English Edition)》 EI CAS 2012年第1期46-51,共6页
A heat transfer performance testing system is presented with its hardware structure, operation principle, and software control and measurement system. Working fluids of the subsystem include thermal conducting oil, co... A heat transfer performance testing system is presented with its hardware structure, operation principle, and software control and measurement system. Working fluids of the subsystem include thermal conducting oil, compressed air, glycol water solution and water as the heating fluids, and air and water as the cooling fluids. The heat transfer performance testing of heat exchangers can be conducted not only for a conventional one heating fluid to one cooling fluid, but also for a compound air cooling heat exchanger with two or three heating fluids in parallel or in series. The control and measurement system is implemented based on a LabVIEW software platform, consisting of the data acquisition and process system, and the automotive operation and control system. By using advanced measuring instruments combined with sound computer software control, the testing system has characteristics of a compact structure, high accuracy, a wide range of testing scope and a friendly operation interface. The uncertainty of the total heat transfer coefficient K is less than 5%. The testing system provides a reliable performance testing platform for designing and developing new heat exchangers. 展开更多
关键词 heat exchanger heat transfer performance testing system LABVIEW
下载PDF
Analysis of secondary flow in shell-side channel of trisection helix heat exchangers 被引量:3
19
作者 王伟晗 陈亚平 +1 位作者 操瑞兵 施明恒 《Journal of Southeast University(English Edition)》 EI CAS 2010年第3期426-430,共5页
The flow characteristics of shell-side fluid in the tube-and-shell heat exchangers with trisection helical baffles with 35° inclined angles are numerically analyzed. The secondary flow distribution of the fluid i... The flow characteristics of shell-side fluid in the tube-and-shell heat exchangers with trisection helical baffles with 35° inclined angles are numerically analyzed. The secondary flow distribution of the fluid in the shell-side channel is focused on. The results on meridian planes indicate that in the shell-side channel, the center part of fluid has an outward tendency because of the centrifugal force, and the peripheral region fluid has an inward tendency under the centripetal force. So in a spiral cycle, the fluid is divided into the upper and lower beams of streamlines, at the same time the Dean vortices are formed near the left baffle, and then the fluid turns to centripetal flow near the right baffle. Finally the two beams of streamlines merge in the main flow. The results of a number of parallel slices between two parallel baffles with the same sector in a swirl cycle also show the existence of the secondary flow and some backward flows at the V-gaps of the adjacent baffles. The secondary flows have a positive effect on mixing fluid by promoting the momentum and mass exchange between fluid particles near the tube wall and in the main stream, and thus they will enhance the heat transfer of the helix heat exchanger. 展开更多
关键词 trisection helix heat exchangers secondary flow Dean vortices heat transfer enhancement flow field analysis
下载PDF
Corrosion risk analysis of tube-and-shell heat exchangers and design of outlet temperature control system 被引量:1
20
作者 Hao-Zhe Jin Yong Gu Guo-Fu Ou 《Petroleum Science》 SCIE CAS CSCD 2021年第4期1219-1229,共11页
This study deals with the high-risk shell-and-tube heat exchangers in the effluent system of hydrogenation reaction of the petrochemical industry.The process of hydroprocessing reactor effluent system is simulated in ... This study deals with the high-risk shell-and-tube heat exchangers in the effluent system of hydrogenation reaction of the petrochemical industry.The process of hydroprocessing reactor effluent system is simulated in Aspen Plus to study the distribution of corrosive medium in the three phases of oil,gas and water.The least-squares method is utilized to calculate the ammonium salt crystallization temperature.Then,the heat exchanger with risk of ammonium salt crystal corrosion is identified.Dynamic mathematical modeling of the heat exchanger is established to determine the transfer function.A temperature control system with proportional integral derivative(PID)control of the heat exchanger outlet is designed,and fuzzy logic is used to implement self-tuning of PID parameters.After MATLAB simulation,the results show the control system can achieve rapid control of the heat exchanger outlet temperature. 展开更多
关键词 shell-and-tube heat exchanger Corrosion risk Dynamic model Fuzzy logic control PID control
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部