The melt treatment of A1-7%Si alloy by the flux injection method in a resistance furnance was investigated. The experimental results show that the flux injection method can realize the melt treatment of A1-7%Si alloy....The melt treatment of A1-7%Si alloy by the flux injection method in a resistance furnance was investigated. The experimental results show that the flux injection method can realize the melt treatment of A1-7%Si alloy. In purification, the flux injection method is superior to the standard lance degassing method. For the injection flux, the purifier Na2SiF6 is more powerful than Na3A1F6, the modifiers SrCl2, and R.E. Cl3 are quick acting, like NaF, but less powerful, the grain refiner containing K2TiF6 and KBF4 with Ti/B=1 is more potent than that with Ti/B=5. The analytical results indicate that the mass-transfer rate for the flux injection method is much higher than that for the conventional method .展开更多
This work reviews the state-of-the art multi-gate field-effect transistor(MuGFET)process technologies and compares the device performance and reliability characteristics of the MuGFETs with the planar Si CMOS devices....This work reviews the state-of-the art multi-gate field-effect transistor(MuGFET)process technologies and compares the device performance and reliability characteristics of the MuGFETs with the planar Si CMOS devices.Owing to the 3D wrapped gate structure,MuGFETs can suppress the SCEs and improve the ON-current performance due to the volume inversion of the channel region.As the Si CMOS technology pioneers to sub-10 nm nodes,the process challenges in terms of lithography capability,process integration controversies,performance variability etc.were also discussed in this work.Due to the severe self-heating effect in the MuGFETs,the ballistic transport and reliability characteristics were investigated.Future alternatives for the current Si MuGFET technology were discussed at the end of the paper.More work needs to be done to realize novel high mobility channel MuGFETs with better performance and reliability.展开更多
As the practicability of a hydrogen-fueled economy emerges, intermediate technologies would be necessary for the transition between hydrocarbon fueled internal combustion engines and hydrogen powered fuel cells. In th...As the practicability of a hydrogen-fueled economy emerges, intermediate technologies would be necessary for the transition between hydrocarbon fueled internal combustion engines and hydrogen powered fuel cells. In the present study, the hydrogen engine efficiency and the load control are the two main parameters that will be improved by using the combined operation of in-cylinder direct fuel injection (DI) and port fuel injection (PFI) strategies to obtain maximum engine power outputs with acceptable efficiency equivalent to gasoline engines. Wide open throttle (WOT) operation has been used to take advantage of the associated increase in engine efficiency, in which the loads have been regulated with mixture richness (qualitative control) instead of volumetric efficiency (quantitative control). The capabilities of a 3D-CFD code have been developed and employed to simulate the whole engine physicochemical process which includes the hydrogen injection through the intake manifold (PFI) and/or the hydrogen DI in the engine compression stroke. Conditions with simulated PFI, PFI + DI and DI have been analyzed to study the effects of mixture preparation behaviors on the hydrogen ignition and its flame propagation inside the engine combustion chamber. Numerically, the CFD code has been intensively validated against experimental engine data which provided remarkable agreement in terms of in-cylinder pressure history evaluation.展开更多
文摘The melt treatment of A1-7%Si alloy by the flux injection method in a resistance furnance was investigated. The experimental results show that the flux injection method can realize the melt treatment of A1-7%Si alloy. In purification, the flux injection method is superior to the standard lance degassing method. For the injection flux, the purifier Na2SiF6 is more powerful than Na3A1F6, the modifiers SrCl2, and R.E. Cl3 are quick acting, like NaF, but less powerful, the grain refiner containing K2TiF6 and KBF4 with Ti/B=1 is more potent than that with Ti/B=5. The analytical results indicate that the mass-transfer rate for the flux injection method is much higher than that for the conventional method .
文摘基于标准CMOS工艺的p+源/漏区和n阱,设计了两种楔形瓣状结构的正向注入型硅基发光二极管(Si-LED),采用UMC 0.18μm 1P6M CMOS工艺设计制备。测试结果表明,正向注入型p+/n-well二极管的发射波长位于近红外波段,峰值波长在1 130 nm附近,且工作电压小于2 V,与标准CMOS电路兼容。其中,八瓣结构的Si-LED(TS2)在200 m A时的发光功率可达1 200 n W,且未出现饱和,而注入电流为40 m A时的最大功率转换效率达5.8×10-6,约为四瓣结构器件(TS1)的2倍。所研制的Si-LED具有工作电压低、转换效率高等优点,有望在光互连领域得到应用。
基金This work was supported by Zhejiang Provincial Natural Science Foundation of China under Grant LR18F040001,LY19F040001the Opening Project of Key Laboratory of Microelectronic Devices&Integrated Technology,Institute of Microelectronics,Chinese Academy of Sciences.
文摘This work reviews the state-of-the art multi-gate field-effect transistor(MuGFET)process technologies and compares the device performance and reliability characteristics of the MuGFETs with the planar Si CMOS devices.Owing to the 3D wrapped gate structure,MuGFETs can suppress the SCEs and improve the ON-current performance due to the volume inversion of the channel region.As the Si CMOS technology pioneers to sub-10 nm nodes,the process challenges in terms of lithography capability,process integration controversies,performance variability etc.were also discussed in this work.Due to the severe self-heating effect in the MuGFETs,the ballistic transport and reliability characteristics were investigated.Future alternatives for the current Si MuGFET technology were discussed at the end of the paper.More work needs to be done to realize novel high mobility channel MuGFETs with better performance and reliability.
文摘As the practicability of a hydrogen-fueled economy emerges, intermediate technologies would be necessary for the transition between hydrocarbon fueled internal combustion engines and hydrogen powered fuel cells. In the present study, the hydrogen engine efficiency and the load control are the two main parameters that will be improved by using the combined operation of in-cylinder direct fuel injection (DI) and port fuel injection (PFI) strategies to obtain maximum engine power outputs with acceptable efficiency equivalent to gasoline engines. Wide open throttle (WOT) operation has been used to take advantage of the associated increase in engine efficiency, in which the loads have been regulated with mixture richness (qualitative control) instead of volumetric efficiency (quantitative control). The capabilities of a 3D-CFD code have been developed and employed to simulate the whole engine physicochemical process which includes the hydrogen injection through the intake manifold (PFI) and/or the hydrogen DI in the engine compression stroke. Conditions with simulated PFI, PFI + DI and DI have been analyzed to study the effects of mixture preparation behaviors on the hydrogen ignition and its flame propagation inside the engine combustion chamber. Numerically, the CFD code has been intensively validated against experimental engine data which provided remarkable agreement in terms of in-cylinder pressure history evaluation.