期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Multiple factors to assist human-derived induced pluripotent stem cells to efficiently differentiate into midbrain dopaminergic neurons
1
作者 Yalan Chen Junxin Kuang +5 位作者 Yimei Niu Hongyao Zhu Xiaoxia Chen Kwok-Fai So Anding Xu Lingling Shi 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期908-914,共7页
Midbrain dopaminergic neurons play an important role in the etiology of neurodevelopmental and neurodegenerative diseases.They also represent a potential source of transplanted cells for therapeutic applications.In vi... Midbrain dopaminergic neurons play an important role in the etiology of neurodevelopmental and neurodegenerative diseases.They also represent a potential source of transplanted cells for therapeutic applications.In vitro differentiation of functional midbrain dopaminergic neurons provides an accessible platform to study midbrain neuronal dysfunction and can be used to examine obstacles to dopaminergic neuronal development.Emerging evidence and impressive advances in human induced pluripotent stem cells,with tuned neural induction and differentiation protocols,makes the production of induced pluripotent stem cell-derived dopaminergic neurons feasible.Using SB431542 and dorsomorphin dual inhibitor in an induced pluripotent stem cell-derived neural induction protocol,we obtained multiple subtypes of neurons,including 20%tyrosine hydroxylase-positive dopaminergic neurons.To obtain more dopaminergic neurons,we next added sonic hedgehog(SHH)and fibroblast growth factor 8(FGF8)on day 8 of induction.This increased the proportion of dopaminergic neurons,up to 75%tyrosine hydroxylase-positive neurons,with 15%tyrosine hydroxylase and forkhead box protein A2(FOXA2)co-expressing neurons.We further optimized the induction protocol by applying the small molecule inhibitor,CHIR99021(CHIR).This helped facilitate the generation of midbrain dopaminergic neurons,and we obtained 31-74%midbrain dopaminergic neurons based on tyrosine hydroxylase and FOXA2 staining.Thus,we have established three induction protocols for dopaminergic neurons.Based on tyrosine hydroxylase and FOXA2 immunostaining analysis,the CHIR,SHH,and FGF8 combined protocol produces a much higher proportion of midbrain dopaminergic neurons,which could be an ideal resource for tackling midbrain-related diseases. 展开更多
关键词 dopaminergic neurons FGF signal induced pluripotent stem cells MIDBRAIN neural differentiation shh signal SMAD signal WNT signal
下载PDF
Sequential stabilization of RNF220 by RLIM and ZC4H2 during cerebellum development and Shh-group medulloblastoma progression 被引量:1
2
作者 Yuwei Li Chencheng Yang +8 位作者 Huishan Wang Ling Zhao Qinghua Kong Yu Cang Shuhua Zhao Longbao Lv Yan Li Bingyu Mao Pengcheng Ma 《Journal of Molecular Cell Biology》 SCIE CAS CSCD 2022年第1期32-46,共15页
Sonic hedgehog (Shh) signaling is essential for the proliferation of cerebellar granule neuron progenitors (CGNPs), and its misregulation is linked to various disorders, including cerebellar cancer medulloblastoma (MB... Sonic hedgehog (Shh) signaling is essential for the proliferation of cerebellar granule neuron progenitors (CGNPs), and its misregulation is linked to various disorders, including cerebellar cancer medulloblastoma (MB). During vertebrate neural development, RNF220, a ubiquitin E3 ligase, is involved in spinal cord patterning by modulating the subcellular location of glioma-associated oncogene homologs (Glis) through ubiquitination. RNF220 is also required for full activation of Shh signaling during cerebellum development in an epigenetic manner through targeting embryonic ectoderm development. ZC4H2 was reported to be involved in spinal cord patterning by acting as an RNF220 stabilizer. Here, we provided evidence to show that ZC4H2 is also required for full activation of Shh signaling in CGNP and MB progression by stabilizing RNF220. In addition, we found that the ubiquitin E3 ligase RING finger LIM domain-binding protein (RLIM) is responsible for ZC4H2 stabilization via direct ubiquitination, through which RNF220 is also thus stabilized. RLIM is a direct target of Shh signaling and is also required for full activation of Shh signaling in CGNP and MB cell proliferation. We further provided clinical evidence to show that the RLIM‒ZC4H2‒RNF220 cascade is involved in Shh-group MB progression. Disease-causative human RLIM and ZC4H2 mutations affect their interaction and regulation. Therefore, our study sheds light on the regulation of Shh signaling during cerebellar development and MB progression and provides insights into neural disorders caused by RLIM or ZC4H2 mutations. 展开更多
关键词 ZC4H2 RLIM RNF220 shh signaling CEREBELLUM medulloblastoma(MB)
原文传递
Coordinated control of oligodendrocyte development by extrinsic and intrinsic signaling cues 被引量:8
3
作者 Li He Q.Richard Lu 《Neuroscience Bulletin》 SCIE CAS CSCD 2013年第2期129-143,共15页
Oligodendrocytes, the myelin-forming cells for axon ensheathment in the central nervous system, are critical for maximizing and maintaining the conduction velocity of nerve impulses and proper brain function. Demyeli-... Oligodendrocytes, the myelin-forming cells for axon ensheathment in the central nervous system, are critical for maximizing and maintaining the conduction velocity of nerve impulses and proper brain function. Demyeli- nation caused by injury or disease together with failure of myelin regeneration disrupts the rapid propagation of action potentials along nerve fibers, and is associated with acquired and inherited disorders, including dev- astating multiple sclerosis and leukodystrophies. The molecular mechanisms of oligodendrocyte myelination and remyelination remain poorly understood. Recently, a series of signaling pathways including Shh, Notch, BMP and Wnt signaling and their intracellular effectors such as Olig1/2, Hesl/5, Smads and TCFs, have been shown to play important roles in regulating oligodendrocyte development and myelination. In this review, we summarize our recent understanding of how these signaling pathways modulate the progression of oligoden- drocyte specification and differentiation in a spatiotemporally-specific manner. A better understanding of the complex but coordinated function of extracellular signals and intracellular determinants during oligodendrocyte development will help to devise effective strategies to promote myelin repair for patients with demyelinating diseases. 展开更多
关键词 OLIGODENDROCYTE specification differentiation MYELINATION shh BMP Notch and Wnt signaling transcription factors chromatin remodeling factors HDAC miRNAs
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部