Shield machines are currently the main tool for underground tunnel construction. Due to the complexity and variability of the underground construction environment, it is necessary to accurately identify the ground in ...Shield machines are currently the main tool for underground tunnel construction. Due to the complexity and variability of the underground construction environment, it is necessary to accurately identify the ground in real-time during the tunnel construction process to match and adjust the tunnel parameters according to the geological conditions to ensure construction safety. Compared with the traditional method of stratum identifcation based on staged drilling sampling, the real-time stratum identifcation method based on construction data has the advantages of low cost and high precision. Due to the huge amount of sensor data of the ultra-large diameter mud-water balance shield machine, in order to balance the identifcation time and recognition accuracy of the formation, it is necessary to screen the multivariate data features collected by hundreds of sensors. In response to this problem, this paper proposes a voting-based feature extraction method (VFS), which integrates multiple feature extraction algorithms FSM, and the frequency of each feature in all feature extraction algorithms is the basis for voting. At the same time, in order to verify the wide applicability of the method, several commonly used classifcation models are used to train and test the obtained efective feature data, and the model accuracy and recognition time are used as evaluation indicators, and the classifcation with the best combination with VFS is obtained. The experimental results of shield machine data of 6 diferent geological structures show that the average accuracy of 13 features obtained by VFS combined with diferent classifcation algorithms is 91%;among them, the random forest model takes less time and has the highest recognition accuracy, reaching 93%, showing best compatibility with VFS. Therefore, the VFS algorithm proposed in this paper has high reliability and wide applicability for stratum identifcation in the process of tunnel construction, and can be matched with a variety of classifer algorithms. By combining 13 features selected from shield machine data features with random forest, the identifcation of the construction stratum environment of shield tunnels can be well realized, and further theoretical guidance for underground engineering construction can be provided.展开更多
According to the actual engineering problem that the precise load model of shield machine is difficult to achieve,a design method of sliding mode robust controller oriented to the automatic rectification of shield mac...According to the actual engineering problem that the precise load model of shield machine is difficult to achieve,a design method of sliding mode robust controller oriented to the automatic rectification of shield machine was proposed. Firstly,the nominal load model of shield machine and the ranges of model parameters were obtained by the soil mechanics parameters of certain geological conditions and the messages of the self-learning of shield machine by tunneling for previous segments. Based on this rectification mechanism model with known ranges of parameters,a sliding mode robust controller was proposed. Finally,the simulation analysis was developed to verify the effectiveness of the proposed controller. The simulation results show that the sliding mode robust controller can be implemented in the attitude rectification process of the shield machine and it has stronger robustness to overcome the soil disturbance.展开更多
A shield machine with freezing function is proposed in order to realize tool change operation at atmospheric pressure. Furthermore, the transformation project of freezing cutterhead and tool change maintenance method ...A shield machine with freezing function is proposed in order to realize tool change operation at atmospheric pressure. Furthermore, the transformation project of freezing cutterhead and tool change maintenance method are put forward. Taking the shield construction of Huanxi Power Tunnel as an example, a numerical analysis of the freezing cutter head of the project was carried out. The results show that when the brine temperature is-25 °C, after 30 d of freezing, the thickness of the frozen wall can reach 0.67 m and the average temperature drops to-9.9 °C. When the brine temperature is-30 °C, after 50 d of freezing, the thickness of the frozen wall can reach 1.01 m and the average temperature drops to-12.4 °C. If the thickness of the frozen wall is 0.5 m and the average temperature is-10 °C, as the design index of the frozen wall, the brine temperature should be lower than-28 °C to meet the excavation requirements in 30 d. Analyzing the frozen wall stress under 0.5 m thickness and-10 °C average temperature condition, the tensile safety factor and compressive safety factor are both greater than 2 at the most dangerous position, which can meet the tool change requirements for shield construction.展开更多
Shield machine is the major technical equipment badly in need in national infrastructure construction. The service conditions of shield machine are extremely complex. The driving interface load fluctuation caused by g...Shield machine is the major technical equipment badly in need in national infrastructure construction. The service conditions of shield machine are extremely complex. The driving interface load fluctuation caused by geological environment changes and multi field coupling of stress field may lead into imbalance of redundant drive motors output torque in main driving system. Therefore, the shield machine driving synchronous control is one of the key technologies of shield machine. This paper is in view of the shield machine main driving synchronous control, achieving the system's adaptive load sharing. From the point of view of cutterhead load changes, nonlinear factors of mechanical transmission mechanism and the control system synchronization performance, the authors analyze the load sharing performance of shield machine main drive system in the event of load mutation. The paper proposes a data-driven synchronized control method applicable to the main drive system. The effectiveness of the method is verified through simulation and experimental methods. The new method can make the system synchronization error greatly reduced, thus it can effectively adapt to load mutation, and reduce shaft broken accident.展开更多
Advances in intelligent shield machines reflect an evolving trend from traditional tunnel boring machines(TBMs)to tunnel boring robots(TBRs).This shift aims to address the challenges encountered by the conventional sh...Advances in intelligent shield machines reflect an evolving trend from traditional tunnel boring machines(TBMs)to tunnel boring robots(TBRs).This shift aims to address the challenges encountered by the conventional shield machine industry arising from construction environment and manual operations.This study presents a systematic review of intelligent shield machine technology,with a particular emphasis on its smart operation.Firstly,the definition,meaning,contents,and development modes of intelligent shield machines are proposed.The development status of the intelligent shield machine and its smart operation are then presented.After analyzing the operation process of the shield machine,an autonomous operation framework considering both stand-alone and fleet levels is proposed.Challenges and recommendations are given for achieving autonomous operation.This study offers insights into the essence and developmental framework of intelligent shield machines to propel the advancement of this technology.展开更多
Due to the closed working environment of shield machines,the construction personnel cannot observe the construction geological environment,which seriously restricts the safety and efficiency of the tunneling process.I...Due to the closed working environment of shield machines,the construction personnel cannot observe the construction geological environment,which seriously restricts the safety and efficiency of the tunneling process.In this study,we present an enhanced multi-head self-attention convolution neural network(EMSACNN)with two-stage feature extraction for geological condition prediction of shield machine.Firstly,we select 30 important parameters according to statistical analysis method and the working principle of the shield machine.Then,we delete the non-working sample data,and combine 10 consecutive data as the input of the model.Thereafter,to deeply mine and extract essential and relevant features,we build a novel model combined with the particularity of the geological type recognition task,in which an enhanced multi-head self-attention block is utilized as the first feature extractor to fully extract the correlation of geological information of adjacent working face of tunnel,and two-dimensional CNN(2dCNN)is utilized as the second feature extractor.The performance and superiority of proposed EMSACNN are verified by the actual data collected by the shield machine used in the construction of a double-track tunnel in Guangzhou,China.The results show that EMSACNN achieves at least 96%accuracy on the test sets of the two tunnels,and all the evaluation indicators of EMSACNN are much better than those of classical AI model and the model that use only the second-stage feature extractor.Therefore,the proposed EMSACNN achieves high accuracy and strong generalization for geological information prediction of shield machine,which is of great guiding significance to engineering practice.展开更多
Shield machine may deviate from its design axis during excavation due to the uncertainty of geological environment and the complexity of operation.This study therefore introduced a framework to predict the attitude an...Shield machine may deviate from its design axis during excavation due to the uncertainty of geological environment and the complexity of operation.This study therefore introduced a framework to predict the attitude and position of shield machine by combining long short-term memory(LSTM)model with attention mechanism.The data obtained from the Wuhan Rail Transit Line 6 project were utilized to verify the feasibility of the proposed method.By adding the attention mechanism into the LSTM model,the proposed model can focus more on parameters with higher weights.Sensitivity analysis based on Pearson correlation coefficient was conducted to improve the prediction efficiency and reduce the irrelevant input parameters.Compared with LSTM model,LSTM-attention model has higher accuracy.The mean value of coefficient of determination(R^(2))increases from 0.625 to 0.736,and the mean value of root mean square error(RMSE)decreases from 3.31 to 2.24.The proposed LSTM-attention model can provide an effective prediction for attitude and position of shield machine in practical tunneling engineering.展开更多
Proper regulation of the earth pressure on the bulkhead of earth-pressure balanced(EPB)shield tunneling machines is significant to ensure safe construction.This study proposes a procedure for regulating the bulkhead p...Proper regulation of the earth pressure on the bulkhead of earth-pressure balanced(EPB)shield tunneling machines is significant to ensure safe construction.This study proposes a procedure for regulating the bulkhead pressure by combining numerical simulations and data mining,and applies the procedure to a metro line constructed in sandy pebble stratum using EPB shield.Firstly,the relationship between the bulkhead pressure and the pressure on the tunnel face is carefully obtained from discrete element modeling,and the required supporting earth pressure is derived by considering the arching effect.Secondly,aided with the machine learning method,a model is constructed for predicting the average bulkhead pressure per ring according to the operational parameters(i.e.,the average driving speed and the rotation speed of the screw conveyor).Given the target value of the bulkhead pressure,the optimal values of the operational parameters are obtained from the model.In addition,an autoregressive moving average stochastic process model is developed to monitor the real-time fluctuation of the bulkhead pressure and guide the actions taken in time to avoid dramatic fluctuations.The results indicate that the pressure difference between the tunnel face and the bulkhead is considerable,and the consideration of the arching effect can avoid overestimating the bulkhead pressure.A combination of the machine learning model and the stochastic process model provides a plausible performance in regulating the bulkhead pressure around the target value without dramatic fluctuation.展开更多
Shield tunneling machines are paramount underground engineering equipment and play a key role in tunnel construction.During the shield construction process,the“mud cake”formed by the difficult-to-remove clay attache...Shield tunneling machines are paramount underground engineering equipment and play a key role in tunnel construction.During the shield construction process,the“mud cake”formed by the difficult-to-remove clay attached to the cutterhead severely affects the shield construction efficiency and is harmful to the healthy operation of a shield tunneling machine.In this study,we propose an enhanced transformer-based detection model for detecting the cutterhead clogging status of shield tunneling machines.First,the working state data of shield machines are selected from historical excavation data,and a long short-term memory-autoencoder neural network module is constructed to remove outliers.Next,variational mode decomposition and wavelet transform are employed to denoise the data.After the preprocessing,nonoverlapping rectangular windows are used to intercept the working state data to obtain the time slices used for analysis,and several time-domain features of these periods are extracted.Owing to the data imbalance in the original dataset,the k-means-synthetic minority oversampling technique algorithm is adopted to oversample the extracted time-domain features of the clogging data in the training set to balance the dataset and improve the model performance.Finally,an enhanced transformer-based neural network is constructed to extract essential implicit features and detect cutterhead clogging status.Data collected from actual tunnel construction projects are used to verify the proposed model.The results show that the proposed model achieves accurate detection of shield machine cutterhead clogging status,with 98.85%accuracy and a 0.9786 F1 score.Moreover,the proposed model significantly outperforms the comparison models.展开更多
This paper introduces an intelligent framework for predicting the advancing speed during earth pressure balance(EPB)shield tunnelling.Five artificial intelligence(AI)models based on machine and deep learning technique...This paper introduces an intelligent framework for predicting the advancing speed during earth pressure balance(EPB)shield tunnelling.Five artificial intelligence(AI)models based on machine and deep learning techniques-back-propagation neural network(BPNN),extreme learning machine(ELM),support vector machine(SVM),long-short term memory(LSTM),and gated recurrent unit(GRU)-are used.Five geological and nine operational parameters that influence the advancing speed are considered.A field case of shield tunnelling in Shenzhen City,China is analyzed using the developed models.A total of 1000 field datasets are adopted to establish intelligent models.The prediction performance of the five models is ranked as GRU>LSTM>SVM>ELM>BPNN.Moreover,the Pearson correlation coefficient(PCC)is adopted for sensitivity analysis.The results reveal that the main thrust(MT),penetration(P),foam volume(FV),and grouting volume(GV)have strong correlations with advancing speed(AS).An empirical formula is constructed based on the high-correlation influential factors and their corresponding field datasets.Finally,the prediction performances of the intelligent models and the empirical method are compared.The results reveal that all the intelligent models perform better than the empirical method.展开更多
The thrust hydraulic system of the prototype shield machine with pressure and flow compound control scheme was introduced. The experimental system integrated with proportional valves for study was designed. Dynamics m...The thrust hydraulic system of the prototype shield machine with pressure and flow compound control scheme was introduced. The experimental system integrated with proportional valves for study was designed. Dynamics modeling of multi-cylinder thrust system and synchronous control design were accomplished. The simulation of the synchronization motion control system was completed in AMESim and Matlab/Simulink software environments. The experiment was conducted by means of master/slave PID with dead band compensating flow and conventional PID regulating pressure. The experimental results show that the proposed thrust hydraulic system and its control strategy can meet the requirements of tunneling in motion and posture control for the shield machine, keeping the non-synchronous error within ±3 mm.展开更多
Autonomous excavation operation is a major trend in the development of a new generation of intelligent tunnel boring machines(TBMs).However,existing technologies are limited to supervised machine learning and static o...Autonomous excavation operation is a major trend in the development of a new generation of intelligent tunnel boring machines(TBMs).However,existing technologies are limited to supervised machine learning and static optimization,which cannot outperform human operation and deal with ever changing geological conditions and the long-term performance measure.The aim of this study is to resolve the problem of dynamic optimization of the shield excavation performance,as well as to achieve autonomous optimal excavation.In this study,a novel autonomous optimal excavation approach that integrates deep reinforcement learning and optimal control is proposed for shield machines.Based on a first-principles analysis of the machine-ground interaction dynamics of the excavation process,a deep neural network model is developed using construction field data consisting of 1.1 million samples.The multi-system coupling mechanism is revealed by establishing an overall system model.Based on the overall system analysis,the autonomous optimal excavation problem is decomposed into a multi-objective dynamic optimization problem and an optimal control problem.Subsequently,a dimensionless multi-objective comprehensive excavation performance measure is proposed.A deep reinforcement learning method is used to solve for the optimal action sequence trajectory,and optimal closed-loop feedback controllers are designed to achieve accurate execution.The performance of the proposed approach is compared to that of human operation by using the construction field data.The simulation results show that the proposed approach not only has the potential to replace human operation but also can significantly improve the comprehensive excavation performance.展开更多
Most current studies about shield tunneling machine focus on the construction safety and tunnel structure stability during the excavation. Behaviors of the machine itself are also studied, like some tracking control o...Most current studies about shield tunneling machine focus on the construction safety and tunnel structure stability during the excavation. Behaviors of the machine itself are also studied, like some tracking control of the machine. Yet, few works concern about the hydraulic components, especially the pressure and flow rate regulation components. This research focuses on pressure control strategies by using proportional pressure relief valve, which is widely applied on typical shield tunneling machines. Modeling of a commercial pressure relief valve is done. The modeling centers on the main valve, because the dynamic performance is determined by the main valve. To validate such modeling, a frequency-experiment result of the pressure relief valve, whose bandwidth is about 3 Hz, is presented as comparison. The modeling and the frequency experimental result show that it is reasonable to regard the pressure relief valve as a second-order system with two low corner frequencies. PID control, dead band compensation control and adaptive robust control(ARC) are proposed and simulation results are presented. For the ARC, implements by using first order approximation and second order approximation are presented. The simulation results show that the second order approximation implement with ARC can track 4 Hz sine signal very well, and the two ARC simulation errors are within 0.2 MPa. Finally, experiment results of dead band compensation control and adaptive robust control are given. The results show that dead band compensation had about 30° phase lag and about 20% off of the amplitude attenuation. ARC is tracking with little phase lag and almost no amplitude attenuation. In this research, ARC has been tested on a pressure relief valve. It is able to improve the valve's dynamic performances greatly, and it is capable of the pressure control of shield machine excavation.展开更多
A motion parameter optimization method based on the objective of minimizing the total energy consumption in segment positioning was proposed for segment erector of shield tunneling machine. The segment positioning pro...A motion parameter optimization method based on the objective of minimizing the total energy consumption in segment positioning was proposed for segment erector of shield tunneling machine. The segment positioning process was decomposed into rotation, lifting and sliding actions in deriving the energy calculation model of segment erection. The work of gravity was taken into account in the mathematical modeling of energy consumed by each actuator. In order to investigate the relationship between the work done by the actuator and the path moved along by the segment, the upward and downward directions as well as the operating quadrant of the segment erector were defined. Piecewise nonlinear function of energy was presented, of which the result is determined by closely coupled components as working parameters and some intermediate variables. Finally, the effectiveness of the optimization method was proved by conducting a case study with a segment erector for the tunnel with a diameter of 3 m and drawing comparisons between different assembling paths. The results show that the energy required by assembling a ring of segments along the optimized moving path can be reduced up to 5%. The method proposed in this work definitely provides an effective energy saving solution for shield tunneling machine.展开更多
The discrete element method (DEM) was used to simulate the flow characteristic and strength characteristic of the conditioned sands in the earth pressure balance (EPB) tunneling. In the laboratory the conditioned sand...The discrete element method (DEM) was used to simulate the flow characteristic and strength characteristic of the conditioned sands in the earth pressure balance (EPB) tunneling. In the laboratory the conditioned sands were reproduced and the slump test and the direct shear test of the conditioned sands were implemented. A DEM equivalent model that can simulate the macro mechanical characteristic of the conditioned sands was proposed,and the corresponding numerical models of the slump test and the shear test were established. By selecting proper DEM model parameters,the errors of the slump values between the simulation results and the test results are in the range of 10.3%-14.3%,and the error of the curves between the shear displacement and the shear stress calculated with the DEM simulation is 4.68%-16.5% compared with that of the laboratory direct shear test. This illustrates that the proposed DEM equivalent model can approximately simulate the mechanical characteristics of the conditioned sands,which provides the basis for further simulation of the interaction between the conditioned soil and the chamber pressure system of the EPB machine.展开更多
Severe shield jamming events have been reported during excavation of Uluabat tunnel through adverse geological conditions, which resulted in several stoppages at advancing a single shielded tunnel boring machine(TBM)....Severe shield jamming events have been reported during excavation of Uluabat tunnel through adverse geological conditions, which resulted in several stoppages at advancing a single shielded tunnel boring machine(TBM). To study the jamming mechanism, three-dimensional(3D) simulation of the machine and surrounding ground was implemented using the finite difference code FLAC3D. Numerical analyses were performed for three sections along the tunnel with a higher risk for entrapment due to the combination of overburden and geological conditions. The computational results including longitudinal displacement contours and ground pressure profiles around the shield allow a better understanding of ground behavior within the excavation. Furthermore, they allow realistically assessing the impact of adverse geological conditions on shield jamming. The calculated thrust forces, which are required to move the machine forward, are in good agreement with field observations and measurements. It also proves that the numerical analysis can effectively be used for evaluating the effect of adverse geological environment on TBM entrapments and can be applied to prediction of loads on the shield and preestimating of the required thrust force during excavation through adverse ground conditions.展开更多
In order to improve the strength and stiffness of shield cutterhead, the method of fuzzy mathematics theory in combination with the finite element analysis is adopted. An optimal design model of structural parameters ...In order to improve the strength and stiffness of shield cutterhead, the method of fuzzy mathematics theory in combination with the finite element analysis is adopted. An optimal design model of structural parameters for shield cutterhead is formulated,based on the complex engineering technical requirements. In the model, as the objective function of the model is a composite function of the strength and stiffness, the response surface method is applied to formulate the approximate function of objective function in order to reduce the solution scale of optimal problem. A multi-objective genetic algorithm is used to solve the cutterhead structure design problem and the change rule of the stress-strain with various structural parameters as well as their optimal values were researched under specific geological conditions. The results show that compared with original cutterhead structure scheme, the obtained optimal scheme of the cutterhead structure can greatly improve the strength and stiffness of the cutterhead, which can be seen from the reduction of its maximum equivalent stress by 21.2%, that of its maximum deformation by 0.75%, and that of its mass by 1.04%.展开更多
Aimed at the frozen soil arch reinforcement form of upside shed used for the shield machine launching in tunneling the internal force of the structure was calculated with the aid of the structural mechanics theory. Co...Aimed at the frozen soil arch reinforcement form of upside shed used for the shield machine launching in tunneling the internal force of the structure was calculated with the aid of the structural mechanics theory. Considering the space characteristics of the structure, this calculating method is suitable for practical engineering. Moreover, the behavior of the freezing arch reinforcement structure was analyzed combined with an engineering case.展开更多
Through the active control of shield thrust system oil pressures,a synchronous shield tunnelling technology combining advancement and segment fabrication was proposed.The key to this technology was to completely explo...Through the active control of shield thrust system oil pressures,a synchronous shield tunnelling technology combining advancement and segment fabrication was proposed.The key to this technology was to completely exploit the additional stroke of the hydraulic jacks generated by the axial insertion of a key block to assemble the segments.Taking the tunnelling project of the Shanghai Airport Railway Link Line as a demonstration project,this paper uses a large model test platform for this synchronous technology.A single-ring construction process along a straight line was simulated,in which the theoretical external loads were implemented on the shield machine.The feasibility and reliability of this synchronous technology were evaluated considering the accuracy of total thrust force control,maintenance of tunnelling speed and shield postures and segment compression.The effectiveness of the redistribution principle for the missing thrust force due to the withdrawal of cylinders located in the segment fabrication region was discussed.Furthermore,some other interesting phenomena were observed in the practical application in addition to the model test.This technology primarily realizes synchronous assembly by improving the control of the propulsion system of conventional shield machines without any transformation of the shield machine’s primary structure,segment patterns or excavation method.The proposed method has good adaptability and a low construction cost,which will be beneficial for future long-distance tunnelling projects.展开更多
The loads acting on shield tunneling machines are basic parameters for the equipment design as well as key control parameters throughout the entire operation of the equipment. In the study, a mechanical analysis for t...The loads acting on shield tunneling machines are basic parameters for the equipment design as well as key control parameters throughout the entire operation of the equipment. In the study, a mechanical analysis for the coupled interactive system between the cutterhead and the ground at the excavation face is conducted. The normal and tangential loads acting on the cutterhead are decoupled and solved, with consideration of the influence of three key factors on loads: geological condition, operating status and equipment structure. Then analytical expressions for the thrust and the torque acting on the equipment under uniform geological condition are established. On this basis, the impact of soil-rock interbedded ground on acting loads is further considered. A theoretical model for loads prediction of earth pressure balance (EPB) shield machines working under soil-rock interbedded ground is proposed. This model is subsequently applied to loads prediction for a shield tunneling project under soil-rock interbedded ground. The computational value of the thrust and the torque, the measured loads and the load ranges from Krause empirical formula are compared. Thus, this model for loads prediction acting on shield tunneling machines under soil-rock interbedded ground has been proved to be effective.展开更多
基金Supported by National Natural Science Foundation of China and Shanxi Coalbased Low Carbon Joint Fund(Grant No.U1910211)National Natural Science Foundation of China(Grant Nos.51975024 and 52105044)National Key Research and Development Project(Grant No.2019YFC0121700).
文摘Shield machines are currently the main tool for underground tunnel construction. Due to the complexity and variability of the underground construction environment, it is necessary to accurately identify the ground in real-time during the tunnel construction process to match and adjust the tunnel parameters according to the geological conditions to ensure construction safety. Compared with the traditional method of stratum identifcation based on staged drilling sampling, the real-time stratum identifcation method based on construction data has the advantages of low cost and high precision. Due to the huge amount of sensor data of the ultra-large diameter mud-water balance shield machine, in order to balance the identifcation time and recognition accuracy of the formation, it is necessary to screen the multivariate data features collected by hundreds of sensors. In response to this problem, this paper proposes a voting-based feature extraction method (VFS), which integrates multiple feature extraction algorithms FSM, and the frequency of each feature in all feature extraction algorithms is the basis for voting. At the same time, in order to verify the wide applicability of the method, several commonly used classifcation models are used to train and test the obtained efective feature data, and the model accuracy and recognition time are used as evaluation indicators, and the classifcation with the best combination with VFS is obtained. The experimental results of shield machine data of 6 diferent geological structures show that the average accuracy of 13 features obtained by VFS combined with diferent classifcation algorithms is 91%;among them, the random forest model takes less time and has the highest recognition accuracy, reaching 93%, showing best compatibility with VFS. Therefore, the VFS algorithm proposed in this paper has high reliability and wide applicability for stratum identifcation in the process of tunnel construction, and can be matched with a variety of classifer algorithms. By combining 13 features selected from shield machine data features with random forest, the identifcation of the construction stratum environment of shield tunnels can be well realized, and further theoretical guidance for underground engineering construction can be provided.
基金Project(2007CB714006) supported by the National Basic Research Program of China
文摘According to the actual engineering problem that the precise load model of shield machine is difficult to achieve,a design method of sliding mode robust controller oriented to the automatic rectification of shield machine was proposed. Firstly,the nominal load model of shield machine and the ranges of model parameters were obtained by the soil mechanics parameters of certain geological conditions and the messages of the self-learning of shield machine by tunneling for previous segments. Based on this rectification mechanism model with known ranges of parameters,a sliding mode robust controller was proposed. Finally,the simulation analysis was developed to verify the effectiveness of the proposed controller. The simulation results show that the sliding mode robust controller can be implemented in the attitude rectification process of the shield machine and it has stronger robustness to overcome the soil disturbance.
基金Project(2014FJ1002)supported by the Science and Technology Major Project of Hunan Province,ChinaProject(2012AA041803)supported by National High Technology Research and Development Program of China。
文摘A shield machine with freezing function is proposed in order to realize tool change operation at atmospheric pressure. Furthermore, the transformation project of freezing cutterhead and tool change maintenance method are put forward. Taking the shield construction of Huanxi Power Tunnel as an example, a numerical analysis of the freezing cutter head of the project was carried out. The results show that when the brine temperature is-25 °C, after 30 d of freezing, the thickness of the frozen wall can reach 0.67 m and the average temperature drops to-9.9 °C. When the brine temperature is-30 °C, after 50 d of freezing, the thickness of the frozen wall can reach 1.01 m and the average temperature drops to-12.4 °C. If the thickness of the frozen wall is 0.5 m and the average temperature is-10 °C, as the design index of the frozen wall, the brine temperature should be lower than-28 °C to meet the excavation requirements in 30 d. Analyzing the frozen wall stress under 0.5 m thickness and-10 °C average temperature condition, the tensile safety factor and compressive safety factor are both greater than 2 at the most dangerous position, which can meet the tool change requirements for shield construction.
文摘Shield machine is the major technical equipment badly in need in national infrastructure construction. The service conditions of shield machine are extremely complex. The driving interface load fluctuation caused by geological environment changes and multi field coupling of stress field may lead into imbalance of redundant drive motors output torque in main driving system. Therefore, the shield machine driving synchronous control is one of the key technologies of shield machine. This paper is in view of the shield machine main driving synchronous control, achieving the system's adaptive load sharing. From the point of view of cutterhead load changes, nonlinear factors of mechanical transmission mechanism and the control system synchronization performance, the authors analyze the load sharing performance of shield machine main drive system in the event of load mutation. The paper proposes a data-driven synchronized control method applicable to the main drive system. The effectiveness of the method is verified through simulation and experimental methods. The new method can make the system synchronization error greatly reduced, thus it can effectively adapt to load mutation, and reduce shaft broken accident.
基金supported by the National Natural Science Foundation of China(No.52105074)the Open Project of State Key Laboratory of Shield Machine and Boring Technology(No.SKLST-2021-K02),China。
文摘Advances in intelligent shield machines reflect an evolving trend from traditional tunnel boring machines(TBMs)to tunnel boring robots(TBRs).This shift aims to address the challenges encountered by the conventional shield machine industry arising from construction environment and manual operations.This study presents a systematic review of intelligent shield machine technology,with a particular emphasis on its smart operation.Firstly,the definition,meaning,contents,and development modes of intelligent shield machines are proposed.The development status of the intelligent shield machine and its smart operation are then presented.After analyzing the operation process of the shield machine,an autonomous operation framework considering both stand-alone and fleet levels is proposed.Challenges and recommendations are given for achieving autonomous operation.This study offers insights into the essence and developmental framework of intelligent shield machines to propel the advancement of this technology.
基金supported by the National Key R&D Program of China(Grant No.2019YFB1705203)Shanghai Municipal Science and Technology Major Project(2021SHZDZX0102).
文摘Due to the closed working environment of shield machines,the construction personnel cannot observe the construction geological environment,which seriously restricts the safety and efficiency of the tunneling process.In this study,we present an enhanced multi-head self-attention convolution neural network(EMSACNN)with two-stage feature extraction for geological condition prediction of shield machine.Firstly,we select 30 important parameters according to statistical analysis method and the working principle of the shield machine.Then,we delete the non-working sample data,and combine 10 consecutive data as the input of the model.Thereafter,to deeply mine and extract essential and relevant features,we build a novel model combined with the particularity of the geological type recognition task,in which an enhanced multi-head self-attention block is utilized as the first feature extractor to fully extract the correlation of geological information of adjacent working face of tunnel,and two-dimensional CNN(2dCNN)is utilized as the second feature extractor.The performance and superiority of proposed EMSACNN are verified by the actual data collected by the shield machine used in the construction of a double-track tunnel in Guangzhou,China.The results show that EMSACNN achieves at least 96%accuracy on the test sets of the two tunnels,and all the evaluation indicators of EMSACNN are much better than those of classical AI model and the model that use only the second-stage feature extractor.Therefore,the proposed EMSACNN achieves high accuracy and strong generalization for geological information prediction of shield machine,which is of great guiding significance to engineering practice.
基金supported by Key Program of the National Natural Science Foundation of China(Grant No.52192664)the Major Program of Science&Technol-ogy of Hubei Province(Grant No.2020ACA006)。
文摘Shield machine may deviate from its design axis during excavation due to the uncertainty of geological environment and the complexity of operation.This study therefore introduced a framework to predict the attitude and position of shield machine by combining long short-term memory(LSTM)model with attention mechanism.The data obtained from the Wuhan Rail Transit Line 6 project were utilized to verify the feasibility of the proposed method.By adding the attention mechanism into the LSTM model,the proposed model can focus more on parameters with higher weights.Sensitivity analysis based on Pearson correlation coefficient was conducted to improve the prediction efficiency and reduce the irrelevant input parameters.Compared with LSTM model,LSTM-attention model has higher accuracy.The mean value of coefficient of determination(R^(2))increases from 0.625 to 0.736,and the mean value of root mean square error(RMSE)decreases from 3.31 to 2.24.The proposed LSTM-attention model can provide an effective prediction for attitude and position of shield machine in practical tunneling engineering.
基金supported by the National Natural ScienceFoundation of China(Grant No.41672360)Science and Technology Commission of Shanghai Munici-pality(Grant No.17DZ1203800)Shanghai Shentong Metro Group Co.,Ltd.(Grant No.17DZ1203804).
文摘Proper regulation of the earth pressure on the bulkhead of earth-pressure balanced(EPB)shield tunneling machines is significant to ensure safe construction.This study proposes a procedure for regulating the bulkhead pressure by combining numerical simulations and data mining,and applies the procedure to a metro line constructed in sandy pebble stratum using EPB shield.Firstly,the relationship between the bulkhead pressure and the pressure on the tunnel face is carefully obtained from discrete element modeling,and the required supporting earth pressure is derived by considering the arching effect.Secondly,aided with the machine learning method,a model is constructed for predicting the average bulkhead pressure per ring according to the operational parameters(i.e.,the average driving speed and the rotation speed of the screw conveyor).Given the target value of the bulkhead pressure,the optimal values of the operational parameters are obtained from the model.In addition,an autoregressive moving average stochastic process model is developed to monitor the real-time fluctuation of the bulkhead pressure and guide the actions taken in time to avoid dramatic fluctuations.The results indicate that the pressure difference between the tunnel face and the bulkhead is considerable,and the consideration of the arching effect can avoid overestimating the bulkhead pressure.A combination of the machine learning model and the stochastic process model provides a plausible performance in regulating the bulkhead pressure around the target value without dramatic fluctuation.
基金supported by the National Key R&D Program of China (Grant No.2018YFB1702503)Shanghai Municipal Science and Technology Major Project (Grant No.2021SHZDZX0102)the State Key Laboratory of Mechanical System and Vibration (Grant No.MSVZD202103)。
文摘Shield tunneling machines are paramount underground engineering equipment and play a key role in tunnel construction.During the shield construction process,the“mud cake”formed by the difficult-to-remove clay attached to the cutterhead severely affects the shield construction efficiency and is harmful to the healthy operation of a shield tunneling machine.In this study,we propose an enhanced transformer-based detection model for detecting the cutterhead clogging status of shield tunneling machines.First,the working state data of shield machines are selected from historical excavation data,and a long short-term memory-autoencoder neural network module is constructed to remove outliers.Next,variational mode decomposition and wavelet transform are employed to denoise the data.After the preprocessing,nonoverlapping rectangular windows are used to intercept the working state data to obtain the time slices used for analysis,and several time-domain features of these periods are extracted.Owing to the data imbalance in the original dataset,the k-means-synthetic minority oversampling technique algorithm is adopted to oversample the extracted time-domain features of the clogging data in the training set to balance the dataset and improve the model performance.Finally,an enhanced transformer-based neural network is constructed to extract essential implicit features and detect cutterhead clogging status.Data collected from actual tunnel construction projects are used to verify the proposed model.The results show that the proposed model achieves accurate detection of shield machine cutterhead clogging status,with 98.85%accuracy and a 0.9786 F1 score.Moreover,the proposed model significantly outperforms the comparison models.
基金funded by“The Pearl River Talent Recruitment Program”in 2019(Grant No.2019CX01G338),。
文摘This paper introduces an intelligent framework for predicting the advancing speed during earth pressure balance(EPB)shield tunnelling.Five artificial intelligence(AI)models based on machine and deep learning techniques-back-propagation neural network(BPNN),extreme learning machine(ELM),support vector machine(SVM),long-short term memory(LSTM),and gated recurrent unit(GRU)-are used.Five geological and nine operational parameters that influence the advancing speed are considered.A field case of shield tunnelling in Shenzhen City,China is analyzed using the developed models.A total of 1000 field datasets are adopted to establish intelligent models.The prediction performance of the five models is ranked as GRU>LSTM>SVM>ELM>BPNN.Moreover,the Pearson correlation coefficient(PCC)is adopted for sensitivity analysis.The results reveal that the main thrust(MT),penetration(P),foam volume(FV),and grouting volume(GV)have strong correlations with advancing speed(AS).An empirical formula is constructed based on the high-correlation influential factors and their corresponding field datasets.Finally,the prediction performances of the intelligent models and the empirical method are compared.The results reveal that all the intelligent models perform better than the empirical method.
基金Project(50425518) supported by National Outstanding Youth Foundation of China Project(2007CB714004) supported by National Basic Research Program of China
文摘The thrust hydraulic system of the prototype shield machine with pressure and flow compound control scheme was introduced. The experimental system integrated with proportional valves for study was designed. Dynamics modeling of multi-cylinder thrust system and synchronous control design were accomplished. The simulation of the synchronization motion control system was completed in AMESim and Matlab/Simulink software environments. The experiment was conducted by means of master/slave PID with dead band compensating flow and conventional PID regulating pressure. The experimental results show that the proposed thrust hydraulic system and its control strategy can meet the requirements of tunneling in motion and posture control for the shield machine, keeping the non-synchronous error within ±3 mm.
基金the National Key Research and Development Program of China(Nos.2020YFF0218004 and 2020YFF0218003)the National Natural Science Foundation of China(No.52105074)。
文摘Autonomous excavation operation is a major trend in the development of a new generation of intelligent tunnel boring machines(TBMs).However,existing technologies are limited to supervised machine learning and static optimization,which cannot outperform human operation and deal with ever changing geological conditions and the long-term performance measure.The aim of this study is to resolve the problem of dynamic optimization of the shield excavation performance,as well as to achieve autonomous optimal excavation.In this study,a novel autonomous optimal excavation approach that integrates deep reinforcement learning and optimal control is proposed for shield machines.Based on a first-principles analysis of the machine-ground interaction dynamics of the excavation process,a deep neural network model is developed using construction field data consisting of 1.1 million samples.The multi-system coupling mechanism is revealed by establishing an overall system model.Based on the overall system analysis,the autonomous optimal excavation problem is decomposed into a multi-objective dynamic optimization problem and an optimal control problem.Subsequently,a dimensionless multi-objective comprehensive excavation performance measure is proposed.A deep reinforcement learning method is used to solve for the optimal action sequence trajectory,and optimal closed-loop feedback controllers are designed to achieve accurate execution.The performance of the proposed approach is compared to that of human operation by using the construction field data.The simulation results show that the proposed approach not only has the potential to replace human operation but also can significantly improve the comprehensive excavation performance.
基金Supported by National Natural Science Funds of China(Grant No.51275451)National Basic Research Program of China(973 Program,Grant No.2013CB035404)+1 种基金Science Fund for Creative Research Groups of National Natural Science Foundation of China(Grant No.51221004)National Hi-tech Research and Development Program of China(863 Program,Grant No.2013AA040203)
文摘Most current studies about shield tunneling machine focus on the construction safety and tunnel structure stability during the excavation. Behaviors of the machine itself are also studied, like some tracking control of the machine. Yet, few works concern about the hydraulic components, especially the pressure and flow rate regulation components. This research focuses on pressure control strategies by using proportional pressure relief valve, which is widely applied on typical shield tunneling machines. Modeling of a commercial pressure relief valve is done. The modeling centers on the main valve, because the dynamic performance is determined by the main valve. To validate such modeling, a frequency-experiment result of the pressure relief valve, whose bandwidth is about 3 Hz, is presented as comparison. The modeling and the frequency experimental result show that it is reasonable to regard the pressure relief valve as a second-order system with two low corner frequencies. PID control, dead band compensation control and adaptive robust control(ARC) are proposed and simulation results are presented. For the ARC, implements by using first order approximation and second order approximation are presented. The simulation results show that the second order approximation implement with ARC can track 4 Hz sine signal very well, and the two ARC simulation errors are within 0.2 MPa. Finally, experiment results of dead band compensation control and adaptive robust control are given. The results show that dead band compensation had about 30° phase lag and about 20% off of the amplitude attenuation. ARC is tracking with little phase lag and almost no amplitude attenuation. In this research, ARC has been tested on a pressure relief valve. It is able to improve the valve's dynamic performances greatly, and it is capable of the pressure control of shield machine excavation.
基金Project(51305328)supported by the National Natural Science Foundation of ChinaProject(2012AA041803)supported by the NationalHigh Technology R&D Program of China+1 种基金Project(GZKF-201210)supported by the Open Fund of State Key Laboratory of Fluid Power Transmission and Control of Zhejiang University,ChinaProject(2013M532031)supported by the China Postdoctoral Science Foundation
文摘A motion parameter optimization method based on the objective of minimizing the total energy consumption in segment positioning was proposed for segment erector of shield tunneling machine. The segment positioning process was decomposed into rotation, lifting and sliding actions in deriving the energy calculation model of segment erection. The work of gravity was taken into account in the mathematical modeling of energy consumed by each actuator. In order to investigate the relationship between the work done by the actuator and the path moved along by the segment, the upward and downward directions as well as the operating quadrant of the segment erector were defined. Piecewise nonlinear function of energy was presented, of which the result is determined by closely coupled components as working parameters and some intermediate variables. Finally, the effectiveness of the optimization method was proved by conducting a case study with a segment erector for the tunnel with a diameter of 3 m and drawing comparisons between different assembling paths. The results show that the energy required by assembling a ring of segments along the optimized moving path can be reduced up to 5%. The method proposed in this work definitely provides an effective energy saving solution for shield tunneling machine.
基金Project (2007CB714006) supported by the National Basic Research Program of China
文摘The discrete element method (DEM) was used to simulate the flow characteristic and strength characteristic of the conditioned sands in the earth pressure balance (EPB) tunneling. In the laboratory the conditioned sands were reproduced and the slump test and the direct shear test of the conditioned sands were implemented. A DEM equivalent model that can simulate the macro mechanical characteristic of the conditioned sands was proposed,and the corresponding numerical models of the slump test and the shear test were established. By selecting proper DEM model parameters,the errors of the slump values between the simulation results and the test results are in the range of 10.3%-14.3%,and the error of the curves between the shear displacement and the shear stress calculated with the DEM simulation is 4.68%-16.5% compared with that of the laboratory direct shear test. This illustrates that the proposed DEM equivalent model can approximately simulate the mechanical characteristics of the conditioned sands,which provides the basis for further simulation of the interaction between the conditioned soil and the chamber pressure system of the EPB machine.
基金Alexander von Humboldt-Foundation (AvH) for the financial support as a research fellowthe financial support of the Scientific and Technological Research Council of Turkey (TüB_ITAK) under Project No. MAG-114M568
文摘Severe shield jamming events have been reported during excavation of Uluabat tunnel through adverse geological conditions, which resulted in several stoppages at advancing a single shielded tunnel boring machine(TBM). To study the jamming mechanism, three-dimensional(3D) simulation of the machine and surrounding ground was implemented using the finite difference code FLAC3D. Numerical analyses were performed for three sections along the tunnel with a higher risk for entrapment due to the combination of overburden and geological conditions. The computational results including longitudinal displacement contours and ground pressure profiles around the shield allow a better understanding of ground behavior within the excavation. Furthermore, they allow realistically assessing the impact of adverse geological conditions on shield jamming. The calculated thrust forces, which are required to move the machine forward, are in good agreement with field observations and measurements. It also proves that the numerical analysis can effectively be used for evaluating the effect of adverse geological environment on TBM entrapments and can be applied to prediction of loads on the shield and preestimating of the required thrust force during excavation through adverse ground conditions.
基金Project(51074180) supported by the National Natural Science Foundation of ChinaProject(2012AA041801) supported by the National High Technology Research and Development Program of China+2 种基金Project(2007CB714002) supported by the National Basic Research Program of ChinaProject(2013GK3003) supported by the Technology Support Plan of Hunan Province,ChinaProject(2010FJ1002) supported by Hunan Science and Technology Major Program,China
文摘In order to improve the strength and stiffness of shield cutterhead, the method of fuzzy mathematics theory in combination with the finite element analysis is adopted. An optimal design model of structural parameters for shield cutterhead is formulated,based on the complex engineering technical requirements. In the model, as the objective function of the model is a composite function of the strength and stiffness, the response surface method is applied to formulate the approximate function of objective function in order to reduce the solution scale of optimal problem. A multi-objective genetic algorithm is used to solve the cutterhead structure design problem and the change rule of the stress-strain with various structural parameters as well as their optimal values were researched under specific geological conditions. The results show that compared with original cutterhead structure scheme, the obtained optimal scheme of the cutterhead structure can greatly improve the strength and stiffness of the cutterhead, which can be seen from the reduction of its maximum equivalent stress by 21.2%, that of its maximum deformation by 0.75%, and that of its mass by 1.04%.
基金Project 2002CB412704 supported by The National 973 Item
文摘Aimed at the frozen soil arch reinforcement form of upside shed used for the shield machine launching in tunneling the internal force of the structure was calculated with the aid of the structural mechanics theory. Considering the space characteristics of the structure, this calculating method is suitable for practical engineering. Moreover, the behavior of the freezing arch reinforcement structure was analyzed combined with an engineering case.
文摘Through the active control of shield thrust system oil pressures,a synchronous shield tunnelling technology combining advancement and segment fabrication was proposed.The key to this technology was to completely exploit the additional stroke of the hydraulic jacks generated by the axial insertion of a key block to assemble the segments.Taking the tunnelling project of the Shanghai Airport Railway Link Line as a demonstration project,this paper uses a large model test platform for this synchronous technology.A single-ring construction process along a straight line was simulated,in which the theoretical external loads were implemented on the shield machine.The feasibility and reliability of this synchronous technology were evaluated considering the accuracy of total thrust force control,maintenance of tunnelling speed and shield postures and segment compression.The effectiveness of the redistribution principle for the missing thrust force due to the withdrawal of cylinders located in the segment fabrication region was discussed.Furthermore,some other interesting phenomena were observed in the practical application in addition to the model test.This technology primarily realizes synchronous assembly by improving the control of the propulsion system of conventional shield machines without any transformation of the shield machine’s primary structure,segment patterns or excavation method.The proposed method has good adaptability and a low construction cost,which will be beneficial for future long-distance tunnelling projects.
基金supported by the National Natural Science Foundation of China (Grant No. 11127202)the National High-Tech Research & Development Program of China ("863" Program) (Grant No. 2012AA041801)
文摘The loads acting on shield tunneling machines are basic parameters for the equipment design as well as key control parameters throughout the entire operation of the equipment. In the study, a mechanical analysis for the coupled interactive system between the cutterhead and the ground at the excavation face is conducted. The normal and tangential loads acting on the cutterhead are decoupled and solved, with consideration of the influence of three key factors on loads: geological condition, operating status and equipment structure. Then analytical expressions for the thrust and the torque acting on the equipment under uniform geological condition are established. On this basis, the impact of soil-rock interbedded ground on acting loads is further considered. A theoretical model for loads prediction of earth pressure balance (EPB) shield machines working under soil-rock interbedded ground is proposed. This model is subsequently applied to loads prediction for a shield tunneling project under soil-rock interbedded ground. The computational value of the thrust and the torque, the measured loads and the load ranges from Krause empirical formula are compared. Thus, this model for loads prediction acting on shield tunneling machines under soil-rock interbedded ground has been proved to be effective.