期刊文献+
共找到55篇文章
< 1 2 3 >
每页显示 20 50 100
On the critical particle size of soil with clogging potential in shield tunneling 被引量:3
1
作者 Shuying Wang Zihao Zhou +3 位作者 Pengfei Liu Zhao Yang Qiujing Pan Weizhong Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第2期477-485,共9页
Shield tunneling is easily obstructed by clogging in clayey strata with small soil particles.However,soil clogging rarely occurs in strata with coarse-grained soils.Theoretically,a critical particle size of soils shou... Shield tunneling is easily obstructed by clogging in clayey strata with small soil particles.However,soil clogging rarely occurs in strata with coarse-grained soils.Theoretically,a critical particle size of soils should exist,below which there is a high risk of soil clogging in shield tunneling.To determine the critical particle size,a series of laboratory tests was carried out with a large-scale rotary shear apparatus to measure the tangential adhesion strength of soils with different particle sizes and water contents.It was found that the tangential adhesion strength at the soilesteel interface gradually increased linearly with applied normal pressure.When the particle size of the soil specimen was less than 0.15 mm,the interfacial adhesion force first increased and then decreased as the water content gradually increased;otherwise,the soil specimens did not manifest any interfacial adhesion force.The amount of soil mass adhering to the steel disc was positively correlated with the interfacial adhesion force,thus the interfacial adhesion force was adopted to characterize the soil clogging risk in shield tunneling.The critical particle size of soils causing clogging was determined to be 0.15 mm.Finally,the generation mechanism of interfacial adhesion force was explored for soils with different particle sizes to explain the critical particle size of soil with clogging risk in shield tunneling. 展开更多
关键词 shield tunneling Soil clogging ADHESION Critical particle size
下载PDF
Prediction of Disc Cutter Life During Shield Tunneling with AI via the Incorporation of a Genetic Algorithm into a GMDH-Type Neural Network 被引量:10
2
作者 Khalid Elbaz Shui-Long Shen +2 位作者 Annan Zhou Zhen-Yu Yin Hai-Min Lyu 《Engineering》 SCIE EI 2021年第2期238-251,共14页
Disc cutter consumption is a critical problem that influences work performance during shield tunneling processes and directly affects the cutter change decision.This study proposes a new model to estimate the disc cut... Disc cutter consumption is a critical problem that influences work performance during shield tunneling processes and directly affects the cutter change decision.This study proposes a new model to estimate the disc cutter life(Hf)by integrating a group method of data handling(GMDH)-type neural network(NN)with a genetic algorithm(GA).The efficiency and effectiveness of the GMDH network structure are optimized by the GA,which enables each neuron to search for its optimum connections set from the previous layer.With the proposed model,monitoring data including the shield performance database,disc cutter consumption,geological conditions,and operational parameters can be analyzed.To verify the performance of the proposed model,a case study in China is presented and a database is adopted to illustrate the excellence of the hybrid model.The results indicate that the hybrid model predicts disc cutter life with high accuracy.The sensitivity analysis reveals that the penetration rate(PR)has a significant influence on disc cutter life.The results of this study can be beneficial in both the planning and construction stages of shield tunneling. 展开更多
关键词 Disc cutter life shield tunneling Operational parameters GMDH-GA
下载PDF
Pressure Regulation for Earth Pressure Balance Control on Shield Tunneling Machine by Using Adaptive Robust Control 被引量:7
3
作者 XIE Haibo LIU Zhibin YANG Huayong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第3期598-606,共9页
Most current studies about shield tunneling machine focus on the construction safety and tunnel structure stability during the excavation. Behaviors of the machine itself are also studied, like some tracking control o... Most current studies about shield tunneling machine focus on the construction safety and tunnel structure stability during the excavation. Behaviors of the machine itself are also studied, like some tracking control of the machine. Yet, few works concern about the hydraulic components, especially the pressure and flow rate regulation components. This research focuses on pressure control strategies by using proportional pressure relief valve, which is widely applied on typical shield tunneling machines. Modeling of a commercial pressure relief valve is done. The modeling centers on the main valve, because the dynamic performance is determined by the main valve. To validate such modeling, a frequency-experiment result of the pressure relief valve, whose bandwidth is about 3 Hz, is presented as comparison. The modeling and the frequency experimental result show that it is reasonable to regard the pressure relief valve as a second-order system with two low corner frequencies. PID control, dead band compensation control and adaptive robust control(ARC) are proposed and simulation results are presented. For the ARC, implements by using first order approximation and second order approximation are presented. The simulation results show that the second order approximation implement with ARC can track 4 Hz sine signal very well, and the two ARC simulation errors are within 0.2 MPa. Finally, experiment results of dead band compensation control and adaptive robust control are given. The results show that dead band compensation had about 30° phase lag and about 20% off of the amplitude attenuation. ARC is tracking with little phase lag and almost no amplitude attenuation. In this research, ARC has been tested on a pressure relief valve. It is able to improve the valve's dynamic performances greatly, and it is capable of the pressure control of shield machine excavation. 展开更多
关键词 shield tunneling machine pressure regulation adaptive robust control
下载PDF
Impact of shield tunneling on adjacent spread foundation on sandy cobble strata 被引量:6
4
作者 Yong Fang Jun Wang +1 位作者 Chuan He Xiongyu Hu 《Journal of Modern Transportation》 2014年第4期244-255,共12页
The section of shield tunnel of the Chengdu Metro line passes primarily through sandy cobble strata. There are many buildings with spread foundations along the lines. Shield tunnel construction will disturb the ground... The section of shield tunnel of the Chengdu Metro line passes primarily through sandy cobble strata. There are many buildings with spread foundations along the lines. Shield tunnel construction will disturb the ground, causing displacement or stress to adjacent spread foundations. Based on the similarity theory, a laboratory model test of shield tunnel driving was carried out to study the influence of shield tunnel excavation on the displace ment of adjacent spread foundation. The results show that foundation closer to the tunnel has greater displacement or settlement than that further away. The horizontal dis placement is small and is influenced greatly by the cutting face. The displacement along the machine driving direction is bigger and is significantly affected by the thrust force. Settlement occurs primarily when shield machine passes close to the foundation and is the greatest at that time. Uneven settlement at the bottom of the spread foundation reaches a maximum after the excavation ends. In a numerical simulation, a particle flow model was con structed to study the impact of shield tunnel excavation on the stresses in the ground. The model showed stress con centration at the bottom of the spread foundation. With the increasing ground loss ratio, a loose area appears in the tunnel dome where the contact force dropped. Above the loose area, the contact force increases, forming an arch shaped soil area which prevents the loose area from expanding to the ground surface. The excavation also changed the pressure distribution around spread foundation. 展开更多
关键词 shield tunnel Sandy cobble strata Spreadfoundation Distinct element method Model test
下载PDF
Analysis of load and adaptability of disc cutters during shield tunneling in soft-hard varied strata
5
作者 Fengwei YANG Weilin SU +1 位作者 Yi YANG Zhiguo CAO 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2023年第4期533-545,共13页
The disc cutters of shield machines exhibit unsatisfactory adaptability and performance during the soft–hard varied strata tunneling process.To analyze the rotation state,cutting performance,and adaptability of disc ... The disc cutters of shield machines exhibit unsatisfactory adaptability and performance during the soft–hard varied strata tunneling process.To analyze the rotation state,cutting performance,and adaptability of disc cutters during shield tunneling in soft–hard varied strata,the Holmquist Johnson Cook and Federal Highway Administration constitutive models are introduced to numerically simulate the failure process of materials on the excavation face and to calculate the load of disc cutters.Additionally,the parameters of the models are modified based on laboratory disc cutter excavation test results.The results of numerical calculation can reflect the load level and the behavior of the disc cutters during operation.The tangential loads of the disc cutters during the cutting of four typical soft-strata excavation face models are numerically calculated,thus providing reference values for the starting torque of the disc cutters.A greater penetration is suggested for soft-strata tunneling to allow the disc cutters to rotate smoothly and continuously as well as to guarantee a better cutting effect.The disc cutters in the center of the cutterhead should be specified with a lower starting torque to prevent uneven wear,rotation stagnation,cutterhead clogging,and other adverse phenomena. 展开更多
关键词 shield tunneling disc cutter load laboratory excavation test numerical calculation soft-hard varied strata
原文传递
Risks analysis of large diameter slurry shield tunneling in urban area
6
作者 Yi Zeng Pierre Guy Atangana Njock +2 位作者 Wang Xiong Xiao-Long Zhang Shui-Long Shen 《Underground Space》 SCIE EI CSCD 2023年第6期281-300,共20页
The construction of super-large tunnels generates various safety risks that can hamper the tunneling process and cause severe damages if not properly identified.This paper presents a case study on the identification a... The construction of super-large tunnels generates various safety risks that can hamper the tunneling process and cause severe damages if not properly identified.This paper presents a case study on the identification and management of geological and environmental risks during the construction of the largest(a diameter of 15.8 m)slurry shield tunnel in China.Its ground conditions and settlement control were identified among the most challenging owing to a large area of mixed ground conditions,11 fault zones and tunneling under residential areas and the city’s Metro Lines 1 and 9.In response to the severity of these risks and challenges,novel monitoring systems,ground treatment,and safety management technologies were successfully implemented throughout the tunneling process.Further,a technical framework was proposed in this study to serve as a risk management guidance for analogous tunneling operations. 展开更多
关键词 Large diameter RISKS shield tunneling Fault zones Geohazard mitigation
原文传递
Prediction of subsurface settlement induced by shield tunnelling in sandy cobble stratum
7
作者 Fan Wang Xiuli Du Pengfei Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期192-212,共21页
This study focuses on the analytical prediction of subsurface settlement induced by shield tunnelling in sandy cobble stratum considering the volumetric deformation modes of the soil above the tunnel crown.A series of... This study focuses on the analytical prediction of subsurface settlement induced by shield tunnelling in sandy cobble stratum considering the volumetric deformation modes of the soil above the tunnel crown.A series of numerical analyses is performed to examine the effects of cover depth ratio(C/D),tunnel volume loss rate(h t)and volumetric block proportion(VBP)on the characteristics of subsurface settle-ment trough and soil volume loss.Considering the ground loss variation with depth,three modes are deduced from the volumetric deformation responses of the soil above the tunnel crown.Then,analytical solutions to predict subsurface settlement for each mode are presented using stochastic medium theory.The influences of C/D,h t and VBP on the key parameters(i.e.B and N)in the analytical expressions are discussed to determine the fitting formulae of B and N.Finally,the proposed analytical solutions are validated by the comparisons with the results of model test and numerical simulation.Results show that the fitting formulae provide a convenient and reliable way to evaluate the key parameters.Besides,the analytical solutions are reasonable and available in predicting the subsurface settlement induced by shield tunnelling in sandy cobble stratum. 展开更多
关键词 shield tunnelling Sandy cobble stratum Subsurface settlement Volumetric deformation mode Stochastic medium theory
下载PDF
Machine learning-based automatic control of tunneling posture of shield machine 被引量:4
8
作者 Hongwei Huang Jiaqi Chang +3 位作者 Dongming Zhang Jie Zhang Huiming Wu Gang Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第4期1153-1164,共12页
For a tunnel driven by a shield machine,the posture of the driving machine is essential to the construction quality and environmental impact.However,the machine posture is controlled by the experienced driver of shiel... For a tunnel driven by a shield machine,the posture of the driving machine is essential to the construction quality and environmental impact.However,the machine posture is controlled by the experienced driver of shield machine by setting hundreds of tunneling parameters empirically.Machine learning(ML)algorithm is an alternative method that can let the computer to learn from the driver’s operation and try to model the relationship between parameters automatically.Thus,in this paper,three ML algorithms,i.e.multi-layer perception(MLP),support vector machine(SVM)and gradient boosting regression(GBR),are improved by genetic algorithm(GA)and principal component analysis(PCA)to predict the tunneling posture of the shield machine.A set of the parameters for shield tunneling is extracted from the construction site of a Shanghai metro.In total,53,785 pairwise data points are collected for about 373 d and the ratio between training set,validation set and test set is 3:1:1.Each pairwise data point includes 83 types of parameters covering the shield posture,construction parameters,and soil stratum properties at the same time.The test results show that the averaged R2 of MLP,SVM and GBR based models are 0.942,0.935 and 0.6,respectively.Then the automatic control for the posture of shield tunnel is illustrated with an application example of the proposed models.The proposed method is proved to be helpful in controlling the construction quality with optimized construction parameters. 展开更多
关键词 shield tunneling Machine learning(ML) Construction parameters Optimization
下载PDF
Heat Treatment Properties of 42CrMo Steel for Bearing Ring of Varisized Shield Tunneling Machine 被引量:3
9
作者 Bo Jiang Leyu Zhou +2 位作者 Xinli Wen Chaolei Zhang Yazheng Liu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2014年第3期383-388,共6页
The heat treatment properties of 42CrMo steel for bearing ring of varisized shield tunneling machine were investigated by optical microscope (OM), scanning electron microscope (SEM), transmission electron microsco... The heat treatment properties of 42CrMo steel for bearing ring of varisized shield tunneling machine were investigated by optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM), and impact tests. The addition of 0.03 wt% C into 42CrMo steel can increase the hardness. But it reduces the impact energy by 46 J because of the appearance of coarser carbides in the matrix and the carbides along the austenite grain boundary. The addition of 0.40 wt% Mn into 42CrMo steel can improve hardenability. However, the toughness of steel is also reduced by 26 J mainly because of the coarsening of carbides and the strengthening of matrix. Both hardenability and toughness of 42CrMo steel can be improved by adding 1.49 wt% Ni and reducing 0.32 wt% Cr. The depth of hardening layer can be raised to 45 mm, and the impact energy at -20 ℃ is 120 J. Thus, it is concluded that a good combination of hardness, hardenability, and toughness of 42CrMo steel can be achieved by alloying with adding some content of C and Ni. Detailed content of C and Ni should be on the requirements of heat treatment properties of steel for bearing ring of varisized shield tunneling machine. 展开更多
关键词 shield tunneling machine Bearing ring 42CrMo steel HARDENABILITY TOUGHNESS
原文传递
Model test and discrete element method simulation of shield tunneling face stability in transparent clay 被引量:3
10
作者 Huayang LEI Yajie ZHANG +1 位作者 Yao HU Yingnan LIU 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2021年第1期147-166,共20页
The stability of the shield tunneling face is an extremely important factor affecting the safety of tunnel construction.In this study,a transparent clay with properties similar to those of Tianjin clay is prepared and... The stability of the shield tunneling face is an extremely important factor affecting the safety of tunnel construction.In this study,a transparent clay with properties similar to those of Tianjin clay is prepared and a new transparent clay model test apparatus is developed to overcome the“black box”problem in the traditional model test.The stability of the shield tunneling face(failure mode,influence range,support force,and surface settlement)is investigated in transparent clay under active failure.A series of transparent clay model tests is performed to investigate the active failure mode,influence range,and support force of the shield tunneling face under different burial depth conditions,whereas particle flow code three-dimensional numerical simulations are conducted to verify the failure mode of the shield tunneling face and surface settlement along the transverse section under different burial depth conditions.The results show that the engineering characteristics of transparent clay are similar to those of soft clay in Binhai,Tianjin and satisfy visibility requirements.Two types of failure modes are obtained:the overall failure mode(cover/diameter:C/D£1.0)and local failure mode(C/D≥2.0).The influence range of the transverse section is wider than that of the longitudinal section when C/D≥2.0.Additionally,the normalized thresholds of the relative displacement and support force ratio are 3%-6%and 0.2-0.4,respectively.Owing to the cushioning effect of the clay layer,the surface settlement is significantly reduced as the tunnel burial depth increases. 展开更多
关键词 shield tunneling face STABILITY transparent clay model test numerical simulation
原文传递
Experimental study on slurry-induced fracturing during shield tunneling 被引量:1
11
作者 Teng WANG Dajun YUAN +1 位作者 Dalong JIN Xinggao LI 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2021年第2期333-345,共13页
Facial support in slurry shield tunneling is provided by slurry pressure to balance the external earth and water pressure.Hydraulic fracturing may occur and cause a significant decrease in the support pressure if the ... Facial support in slurry shield tunneling is provided by slurry pressure to balance the external earth and water pressure.Hydraulic fracturing may occur and cause a significant decrease in the support pressure if the slurry pressure exceeds the threshold of the soil or rock material,resulting in a serious face collapse accident.Preventing the occurrence of hydraulic fracturing in a slurry shield requires investigating the effects of related influencing factors on the hydraulic fracturing pressure and fracture pattern.In this study,a hydraulic fracturing apparatus was developed to test the slurry-induced fracturing of cohesive soil.The effects of different sample parameters and loading conditions,including types of holes,unconfined compressive strength,slurry viscosity,and axial and circumferential loads,on the fracturing pressure and fracture dip were examined.The results indicate that the fracture dip is mainly affected by the deviator stress.The fracturing pressure increases linearly with the increase in the circumferential pressure,but it is almost independent of the axial pressure.The unconfined compressive strength of soil can reflect its ability to resist fracturing failure.The fracturing pressure increases with an increase in the unconfined compressive strength as well as the slurry viscosity.Based on the test results,an empirical approach was proposed to estimate the fracturing pressure of the soil. 展开更多
关键词 slurry shield tunneling hydraulic fracturing test fracturing pressure fracture dip unconfined compressive strength slurry viscosity
原文传递
Numerical study on 3D effect and practical design in shield tunneling
12
作者 Hossain Md.Shahin Teruo Nakai Tetsuo Okuno 《Underground Space》 SCIE EI 2019年第3期201-209,共9页
In practice,different design methods are used in solving geotechnical problems depending on the type of issue such as the tunneling,braced excavation,or bearing capacity of a foundation,that is,the basic mechanism of ... In practice,different design methods are used in solving geotechnical problems depending on the type of issue such as the tunneling,braced excavation,or bearing capacity of a foundation,that is,the basic mechanism of the design method differs depending on the problems even for the same ground.A numerical analysis using the finite element method has recently become familiar owing to an improved computing performance;however,it is not widely used in the design of geotechnical problems including tunnel excavation owing to the reliability of the constitutive model of the ground material.If a constitutive model of soils can properly express the properties of the ground material,a numerical analysis will play a vital role in solving the geotechnical problems.In this paper,the current state of a numerical analysis and its applicability in tunnel design are discussed.Herein,the simulation of the ground behavior during tunnel excavation is carried out using sandy and clay ground parameters for shallow and deep tunnel excavations.This paper is mainly focused on the effects of tunnel excavation under three-dimensional(3D)conditions,as well as the current design method.Non-linear 2D and 3D finite element analyses have been conducted,in which the elastoplastic sub-loading tij model has been used as a constitutive model of the soil.The performance and acceptability of the constitutive model have already been proven to reproduce the results of various model tests on different geotechnical problems such as the tunneling,braced excavation,and bearing capacity of a foundation,as well as the measured field data.It was found that a 2D finite element analysis where the rate of stress release is considered,can be used for the prediction of the ground deformation and surface settlement;however,it does not provide rational information in the prediction of tunnel lining forces such as the stress,bending moment,and axial force,which emphasize the necessity of a 3D analysis with a proper construction process in a tunnel design. 展开更多
关键词 shield tunneling Finite element analysis 3D effect
原文传递
Determination of minimum overburden depth for underwater shield tunnel in sands:Comparison between circular and rectangular tunnels 被引量:2
13
作者 Weixin Sun Fucheng Han +4 位作者 Hanlong Liu Wengang Zhang Yanmei Zhang Weijia Su Songlin Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第7期1671-1686,共16页
With the development of global urbanization,the utilization of underground space is more critical and attractive for civil purposes.Various shapes of shield tunnels have been gradually proposed to cope with different ... With the development of global urbanization,the utilization of underground space is more critical and attractive for civil purposes.Various shapes of shield tunnels have been gradually proposed to cope with different geological conditions and service purposes of underground structures.Generally,reducing the burial depth of shield tunnel is conducive to construction and cost saving.However,extremely small overburden depth cannot provide sufficient uplift resistance to maintain the stability and serviceability of the tunnel.To this end,this paper firstly reviewed the status of deriving the minimum sand over-burden depth of circular shield tunnel using mechanical equilibrium(ME)method.It revealed that the estimated depth is rather conservative.Then,the uplift resistance mechanism of both circular and rectangular tunnels was deduced theoretically and verified with the model tests.The theoretical uplift resistance is consistent with the experimental values,indicating the feasibility of the proposed equations.Furthermore,the determination of the minimum soil overburden depth of rectangular shield tunnel under various working conditions was presented through integrated ME method,which can provide more reasonable estimations of suggested tunnel burial depth for practical construction.Additionally,optimizations were made for calculating the uplift resistance,and the soil thickness providing uplift resistance is suggested to be adjusted according to the testing results.The results can provide reference for the design and construction of various shapes of shield tunnels in urban underground space exploitation. 展开更多
关键词 Minimum overburden depth Uplift resistance mechanism shield tunnel shape Tunnel anti-floating
下载PDF
Analytical solution for longitudinal deformation of shield tunnel induced by overcrossing tunnelling considering circumferential joints
14
作者 Zhiwei Zhang Rongzhu Liang +4 位作者 Zhongchao Li Cheng Kang MHEl Naggar Mingzhao Xiao Wenbing Wu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第9期2355-2374,共20页
This paper presents a new analytical solution for assessing the longitudinal deformation of shield tunnel associated with overcrossing tunnelling in consideration of circumferential joints.A simplified longitudinal be... This paper presents a new analytical solution for assessing the longitudinal deformation of shield tunnel associated with overcrossing tunnelling in consideration of circumferential joints.A simplified longitudinal beam-spring model(SLBSM)is established to model the longitudinal behaviours of shield tunnel,which can consider the opening and dislocation between segmental rings simultaneously.Then,the existing tunnel is treated as the SLBSM resting on the elastic foundation.The state equations including tunnel displacements and internal forces are constructed to solve the discontinuous deformation of circumferential joint-segmental ring.The feasibility of the proposed solution is verified through three well-documented cases.The predictions from the proposed method are also compared with other analytical methods.It is found that the proposed method can well capture the deformation of tunnel segmental rings and joints,where the rigid displacement mainly occurs in the segmental rings while the rotation and dislocation occur in the circumferential joints.Some dominant parameters are also analysed to explore the effects on existing tunnel deformation,including the rotation stiffness and shearing stiffness of joints,the skew angle and the clearance between new and old tunnels. 展开更多
关键词 Overcrossing tunnelling shield tunnel Circumferential joints Longitudinal beam-spring model(LBSM) Opening DISLOCATION
下载PDF
Mechanical performances of shield tunnel segments under asymmetric unloading induced by pit excavation
15
作者 Gang Wei Feifan Feng +2 位作者 Chengbao Hu Jiaxuan Zhu Xiao Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第6期1547-1564,共18页
To explore the stress and deformation responses,as well as the failure characteristics of the shield tunnel segment of Hangzhou Metro under the influences of pit excavation and other surrounding projects,a self-develo... To explore the stress and deformation responses,as well as the failure characteristics of the shield tunnel segment of Hangzhou Metro under the influences of pit excavation and other surrounding projects,a self-developed“shield tunnel segment hydraulic loading system”was used to carry out full-scale loading tests on the three-ring staggered assembled segments.The structural performances and failure process of the tunnel segment under step-by-step asymmetric unloading were studied.A safety index was proposed to describe the bearing capacity of the segment.Next,a finite element model(FEM)was established to analyze the bearing capacity of segment using the test results.Finally,the effect of reinforcement with a steel plate on the deformation and bearing capacity of the segment was analyzed.The results showed that under asymmetric unloading,the peak value and amplitude of the bending moment on the near unloading side converged with a greater value than those on the far side.The concrete internal force exhibited a directional transformation at different load stages.Cracks first appeared at the 180inner arc surface of the bottom standard block and then expanded to both sides,while the rate of crack propagation of the outer arc surface was relatively lower.The bearing capacity of the segments can be evaluated by the combination of the factors,e.g.the residual bearing capacity coefficient,moment transfer coefficient,and characterization coefficient.The segments approaching failure can facilitate the increase in the residual bearing capacity coefficient by more than 50%.This can provide guidance for the service assessment of metro tunnel operations. 展开更多
关键词 shield tunnel segment Full-scale test Asymmetric unloading Stress and deformation Safety index
下载PDF
Dynamic response analysis of liquefiable ground due to sinusoidal waves of different frequencies of shield construction
16
作者 Wang Jingyue Ge Xinsheng +4 位作者 Sun Jingyuan Liu Yasheng Shang Zhuo Wang Zhiqiang Tian Maoguo 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第3期637-646,共10页
Vibration induced by shield construction can lead to liquefaction of saturated sand.Based on FLAC3D software,a numerical model of tunnel excavation is established and sinusoidal velocity loads with different frequenci... Vibration induced by shield construction can lead to liquefaction of saturated sand.Based on FLAC3D software,a numerical model of tunnel excavation is established and sinusoidal velocity loads with different frequencies are applied to the excavation face.The pattern of the excess pore pressure ratio with frequency,as well as the dynamic response of soil mass under different frequency loads before excavation,is analyzed.When the velocity sinusoidal wave acts on the excavation surface of the shield tunnel with a single sand layer,soil liquefaction occurs.However,the ranges and locations of soil liquefaction are different at different frequencies,which proves that the vibration frequency influences the liquefaction location of the stratum.For sand-clay composite strata with liquefiable layers,the influence of frequency on the liquefaction range is different from that of a single stratum.In the frequency range of 5-30 Hz,the liquefaction area and surface subsidence decrease with an increase in vibration frequency.The research results in this study can be used as a reference in engineering practice for tunneling liquefiable strata with a shield tunneling machine. 展开更多
关键词 shield tunnel liquefiable formation FLAC3D numerical simulation excess pore pressure ratio dynamic response analysis
下载PDF
Assessing a soft twin tunneling numerical model using field data
17
作者 Ke-shuan Ma1,2,Lie-yun Ding11. School of Civil Engineering and Mechanics,Hubei Key Laboratory of Control Structure, Huazhong University of Science & Technology, Wuhan 430074, China 2. Department of Civil Engineering, Nanyang Institute of Technology, Nanyang 473004, China. 《Journal of Pharmaceutical Analysis》 SCIE CAS 2009年第1期36-41,共6页
Using a five-floor building affected by the Yangtze River highway tunnels in Wuhan as the engineering background, we have constructed a free-field model and a coupled model to study the soil, lining, foundations and u... Using a five-floor building affected by the Yangtze River highway tunnels in Wuhan as the engineering background, we have constructed a free-field model and a coupled model to study the soil, lining, foundations and upper structure, and analyze the rules of movements of building foundation and ground induced by single tunnel and twin tunnel excavation with the Finite Element Analysis method. It is shown that for the coupled model, the longitudinal displacement of each foundation increases slowly when the tunnel face gets close to the foundation section and then increases fast when the tunnel face moves away from the foundation during the single and twin tunneling. For a single tunnel, the surface settlements are overestimated by the free-field and coupled tunnel. This might be crucial in urban areas. Regarding the maximum settlements and the width of the settlement trough, the difference between the free-field model and the coupled model is quite obvious. This comparison with the field measurement value reveals that the coupled model seems to be superior to the free-field model. These results are of instructive significance for design and excavation. 展开更多
关键词 finite element analysis THREE-DIMENSIONAL slurry shield tunneling building SETTLEMENT
下载PDF
Examining the effect of adverse geological conditions on jamming of a single shielded TBM in Uluabat tunnel using numerical modeling 被引量:8
18
作者 Rohola Hasanpour Jürgen Schmitt +1 位作者 Yilmaz Ozcelik Jamal Rostami 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第6期1112-1122,共11页
Severe shield jamming events have been reported during excavation of Uluabat tunnel through adverse geological conditions, which resulted in several stoppages at advancing a single shielded tunnel boring machine(TBM).... Severe shield jamming events have been reported during excavation of Uluabat tunnel through adverse geological conditions, which resulted in several stoppages at advancing a single shielded tunnel boring machine(TBM). To study the jamming mechanism, three-dimensional(3D) simulation of the machine and surrounding ground was implemented using the finite difference code FLAC3D. Numerical analyses were performed for three sections along the tunnel with a higher risk for entrapment due to the combination of overburden and geological conditions. The computational results including longitudinal displacement contours and ground pressure profiles around the shield allow a better understanding of ground behavior within the excavation. Furthermore, they allow realistically assessing the impact of adverse geological conditions on shield jamming. The calculated thrust forces, which are required to move the machine forward, are in good agreement with field observations and measurements. It also proves that the numerical analysis can effectively be used for evaluating the effect of adverse geological environment on TBM entrapments and can be applied to prediction of loads on the shield and preestimating of the required thrust force during excavation through adverse ground conditions. 展开更多
关键词 Single shielded tunnel boring machine(TBM) Numerical modeling shield jamming Squeezing ground Uluabat tunnel
下载PDF
Risk identification and risk mitigation during metro station construction by enlarging shield tunnel combined with cut-and-cover method 被引量:3
19
作者 Zhang, Xinjin Liu, Weining Lu, Meili 《Journal of Southeast University(English Edition)》 EI CAS 2008年第S1期142-146,共5页
Constructing a metro station by enlarging shield tunnels combined with a mining/cut-and-cover method provides a new method to solve the contradictions of construction time limits of shield tunnels and stations. As a n... Constructing a metro station by enlarging shield tunnels combined with a mining/cut-and-cover method provides a new method to solve the contradictions of construction time limits of shield tunnels and stations. As a new-style construction method, there are several specific risks involved in the construction process. Based on the test section of Sanyuanqiao station on Beijing metro line 10, and combined with the existing methods of risk identification at present, including a review of world-wide operational experience of similar projects, the study of generic guidance on hazards associated with the type of work being undertaken, and discussions with qualified and experienced staff from the project team, etc., the specific risks during the construction process of the metro station constructed by enlarging shield tunnels combined with the cut-and-cover method are identified. The results show that the specific risks mainly come from three construction processes which include constructing upper enclosure structures, excavating the soil between shield tunnels and demolishing shield segments. Then relevant risk mitigation measures are put forward. The results can provide references for scheme improvement and a comprehensive risk assessment of the new-style construction method. 展开更多
关键词 shield tunnel cut-and-cover method metro station risk identification risk mitigation
下载PDF
Optimal Control of Slurry Pressure during Shield Tunnelling Based on Random Forest and Particle Swarm Optimization 被引量:3
20
作者 Weiping Luo Dajun Yuan +2 位作者 Dalong Jin Ping Lu Jian Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第7期109-127,共19页
The control of slurry pressure aiming to be consistent with the external water and earth pressure during shield tunnelling has great significance for face stability,especially in urban areas or underwater where the su... The control of slurry pressure aiming to be consistent with the external water and earth pressure during shield tunnelling has great significance for face stability,especially in urban areas or underwater where the surrounding environment is very sensitive to the fluctuation of slurry pressure.In this study,an optimal control method for slurry pressure during shield tunnelling is developed,which is composed of an identifier and a controller.The established identifier based on the random forest(RF)can describe the complex non-linear relationship between slurry pressure and its influencing factors.The proposed controller based on particle swarm optimization(PSO)can optimize the key factor to precisely control the slurry pressure at the normal state of advancement.A data set from Tsinghua Yuan Tunnel in China was used to train the RF model and several performance measures like R2,RMSE,etc.,were employed to evaluate.Then,the hybrid RF-PSO control method is adopted to optimize the control of slurry pressure.The good agreement between optimized slurry pressure and expected values demonstrates a high identifying and control precision. 展开更多
关键词 shield tunnelling slurry pressure optimal control random forest particle swarm optimization
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部