In the realm of subway shield tunnel operations,the impact of tunnel settlement on the operational performance of subway vehicles is a crucial concern.This study introduces an advanced analytical model to investigate ...In the realm of subway shield tunnel operations,the impact of tunnel settlement on the operational performance of subway vehicles is a crucial concern.This study introduces an advanced analytical model to investigate rail geometric deformations caused by settlement within a vehicle-track-tunnel coupled system.The model integrates the geometric deformations of the track,attributed to settlement,as track irregularities.A novel“cyclic model”algorithm was employed to enhance computational efficiency without compromising on precision,a claim that was rigorously validated.The model’s capability extends to analyzing the time-history responses of vehicles traversing settlement-affected areas.The research primarily focuses on how settlement wavelength,amplitude,and vehicle speed influence operational performance.Key findings indicate that an increase in settlement wavelength can improve vehicle performance,whereas a rise in amplitude can degrade it.The study also establishes settlement thresholds,based on vehicle operation comfort and safety.These insights are pivotal for maintaining and enhancing the safety and efficiency of subway systems,providing a valuable framework for urban infrastructure management and long-term maintenance strategies in metropolitan transit systems.展开更多
Subway tunnels often suffer from surface pathologies such as cracks,corrosion,fractures,peeling,water and sand infiltration,and sudden hazards caused by foreign object intrusions.Installing a mobile visual pathology s...Subway tunnels often suffer from surface pathologies such as cracks,corrosion,fractures,peeling,water and sand infiltration,and sudden hazards caused by foreign object intrusions.Installing a mobile visual pathology sensing system at the front end of operating trains is a critical measure to ensure subway safety.Taking leakage as the typical pathology,a tunnel pathology automatic visual detection method based on Deeplabv3+(ASTPDS)was proposed to achieve automatic and high-precision detection and pixel-level morphology extraction of pathologies.Compared with similar methods,this approach showed significant advantages and achieved a detection accuracy of 93.12%,surpassing FCN and U-Net.Moreover,it also exceeded the recall rates for detecting leaks of FCN and U-Net by 8.33%and 8.19%,respectively.展开更多
Urban infrastructure has become more complex with the rapid development of urban transportation networks.In urban environments with limited space,construction of facilities like subways and bridges may mutually influe...Urban infrastructure has become more complex with the rapid development of urban transportation networks.In urban environments with limited space,construction of facilities like subways and bridges may mutually influence each other,especially when subway construction requires passing under bridges.In such cases,pile foundation replacement technology is often necessary.However,this technology is highly specialized,with a lengthy and risky construction period,and high costs.Personnel must be proficient in key technical aspects to ensure construction quality.This article discusses the technical principle,construction process,and core technology of pile foundation replacement,along with the application of this technology in subway tunnel crossing bridge projects,supported by engineering examples for reference.展开更多
As the urban populations grow,the number and size of subway construction projects are increasing while also meeting higher construction standards.So,subway construction projects must have a better understanding of con...As the urban populations grow,the number and size of subway construction projects are increasing while also meeting higher construction standards.So,subway construction projects must have a better understanding of construction technology.This article focuses on the construction technology of the subway tunnel expansion under the bridge foundation.By analyzing the engineering characteristics of the bridge foundation and using a project as an example,this article provides a detailed discussion of the construction process of tunnel expansion under a bridge foundation.This article aims to serve as a reference for subway tunnel construction in China to ensure the key points of construction technology are understood,thus improving construction quality and laying a solid technical foundation for the sustainable development of urban rail engineering.展开更多
There is an increasing demand on wireless communications in subway tunnels to provide video surveillance and sensory data for security,maintenance and train control,and to offer various communication or entertainment ...There is an increasing demand on wireless communications in subway tunnels to provide video surveillance and sensory data for security,maintenance and train control,and to offer various communication or entertainment services(e.g.,Internet,etc.) to passengers as well.The wireless channel in tunnels is quite unique due to the confined space and the waveguide effects.Therefore,modeling the radio channel characteristics in tunnels is critically important for communication systems design or optimization.This paper investigates the key radio channel characteristics of a subway tunnel at 2.4 GHz and 5 GHz,such as the path loss,root mean square(RMS) delay spread,channel stationarity,Doppler shift,and channel capacity.The field measurements show that channel characteristics in tunnels are highly location-dependent and there exist abundant components in Doppler shift domain.In the straight section of the subway tunnel,the measured path loss exponents are close to1.6,lower than that in free space.展开更多
Predicting and estimating the response of sub- way tunnel to adjacent excavation of foundation pit is a research focus in the field of underground engineering. Based on the principle of two-stage method and incre- men...Predicting and estimating the response of sub- way tunnel to adjacent excavation of foundation pit is a research focus in the field of underground engineering. Based on the principle of two-stage method and incre- mental method, an analytic approach is suggested in this paper to solve this problem in an accurate and rapid way, and the upheavals of tunnel due to adjacent excavation are solved by analytic method. Besides, the presented method is used in the practical engineering case of Shenzhen Metro Line 11 and verified by numerical simulation and in situ measurement. Finally, a parametric analysis is performed to investigate the influence of different factors on tunnel's deflection. Some useful conclusions have been drawn from the research as below: The deflection results of tunnel obtained from analytic method are nearly consistent with the results getting from numerical analysis and measured data, which verified the accuracy and rationality of pre- sented method. The excavation size has a significant impact on both the displacement values and influenced range of tunnel. However, the relative distance only impacts the displacement values of tunnel, but not the influenced range of tunnel. It may provide certain reference to analyze the deflection of subway tunnel influenced by adjacent excavation.展开更多
For the tunnel crossing active fault,the damage induced by fault movement is always serious.To solve such a problem,a detailed anti-faulting tunnel design process for Urumqi subway line 2 was introduced,and seven thre...For the tunnel crossing active fault,the damage induced by fault movement is always serious.To solve such a problem,a detailed anti-faulting tunnel design process for Urumqi subway line 2 was introduced,and seven three-dimensional elastic-plastic finite element models were established.The anti-faulting design process included three steps.First,the damage of tunnel lining from different locations of fault rupture surfaces was analyzed.Then,the analysis of the effect on tunnel buried depth was given.Finally,the effect of the disaster mitigation method on the flexible joint was verified and the location of the flexible joint was discussed.The results show that when the properties of surrounding rock at the tunnel bottom grows soft,the tunnel deformation curve is smoother and tunnel damage induced by fault movement is less serious.The vertical displacement change ratio of secondary linings along the tunnel axis may be the main factor to cause shear damage to the tunnel.The interface between the hanging wall and fracture zone is defined as the most adverse fault rupture surface.The tunnel damage was reduced with the decrease in the tunnel buried depth as more energy was dissipated by overburden soil and the differential uplift zone of soil became more diffuse.The method of the flexible joint can reduce the tunnel damage significantly and the disaster mitigation effect of different locations on the flexible joint is different.The tunnel damage is reduced by the greatest degree when the flexible joint is located on the fault rupture surface.展开更多
Given the increasingly notable segmentation of underground space by existing subway tunnels, it is dif- ficult to effectively and adequately develop and utilize underground space in busy parts of a city. This study pr...Given the increasingly notable segmentation of underground space by existing subway tunnels, it is dif- ficult to effectively and adequately develop and utilize underground space in busy parts of a city. This study presents a combined construction technology that has been developed for use in underground spaces; it includes a deformation buffer layer, a special grouting technique, jump excavation by compart- ment, back-pressure portal frame technology, a reinforcement technique, and the technology of a steel portioning drum or plate. These technologies have been successfully used in practical engineering. The combined construction technology presented in this paper provides a new method of solving key techni- cal problems in underground spaces in effectively used cross-subway tunnels. As this technology has achieved significant economic and social benefits, it has valuable future applications.展开更多
Fire-driven flow analysis in the underground subway station has been performed with various main tunnel ventilations. Shin-gum-ho station (depth: 46 m) in Seoul is selected as a simulation model. The ventilation mo...Fire-driven flow analysis in the underground subway station has been performed with various main tunnel ventilations. Shin-gum-ho station (depth: 46 m) in Seoul is selected as a simulation model. The ventilation mode is assumed to be emergency state. Various main tunnel ventilations are applied to operate in a proper way for helping of smoke exhaustion in platform. The entire station is covered for simulation. Ventilation diffusers are modeled as 95 square shapes of 0.6 m × 0.6 m in the lobby and as 222 square shapes of 0.6 m × 0.6 m and four rectangular shapes of 1.2 m × 0.8 m in the platform. The total of 7.5 million grids is generated and whole domain is divided to 22 blocks for MPI (massage passing interface) efficiency of calculation. LES (large eddy simulation) is applied to solve the momentum equation. Smagorinsky model (Cs = 0.2) is used as SGS (subgrid scale) model. The distribution of CO (carbon monoxide) is calculated for various capacity of main tunnel ventilation and compared with each other.展开更多
Moving IBM (immersed boundary method) is applied to analyze the relative motion of railway car flow in the single-bore subway tunnel with vertical ventilation. The tested car body is modeled by cylinder type body. T...Moving IBM (immersed boundary method) is applied to analyze the relative motion of railway car flow in the single-bore subway tunnel with vertical ventilation. The tested car body is modeled by cylinder type body. The subway tunnel is assumed to be the single-car-passing straight type (single-bore tunnel). The modeled car is relatively moved forward. On the other hand, the tunnel and vertical ventilation are fixed. The momentum equations are solved by LES (large eddy simulation) method. The initial condition of fluid in the subway tunnel is stationary. The Reynolds number is 1,500 based on the cylinder radius. The turbulent flow field in the subway tunnel and vertical ventilation shaft are to be qualitatively investigated.展开更多
When subway tunnels are routed underneath rivers, riverbed scour may expose the structure, with potentially severe consequences. Thus, it is important to identify the maximum scour depth to ensure that the designed bu...When subway tunnels are routed underneath rivers, riverbed scour may expose the structure, with potentially severe consequences. Thus, it is important to identify the maximum scour depth to ensure that the designed buried depth is adequate. There are a range of methods that may be applied to this problem, including the fluvial process analysis method, geological structure analysis method, scour formula method, scour model experiment method, and numerical simulation method. However, the application ranges and forecasting precision of these methods vary considerably. In order to quantitatively analyze the characteristics of the different methods, a subway tunnel passing underneath a river was selected, and the aforementioned five methods were used to forecast the maximum scour depth. The fluvial process analysis method was used to characterize the river regime and evolution trend, which were the baseline for examination of the scour depth of the riverbed. The results obtained from the scour model experiment and the numerical simulation methods are reliable; these two methods are suitable for application to tunnel projects passing underneath rivers. The scour formula method was less accurate than the scour model experiment method; it is suitable for application to lower risk projects such as pipelines. The results of the geological structure analysis had low precision; the method is suitable for use as a secondary method to assist other research methods. To forecast the maximum scour depth of the riverbed above the subway tunnel, a combination of methods is suggested, and the appropriate analysis method should be chosen with respect to the local conditions.展开更多
Shanghai Changjiang Tunnel, 15 m in diameter, is one of the world's largest shield-driven tunnels in diameter. Tongji University has recently carried out a test on the full-scale three-ring lining structure of Changj...Shanghai Changjiang Tunnel, 15 m in diameter, is one of the world's largest shield-driven tunnels in diameter. Tongji University has recently carried out a test on the full-scale three-ring lining structure of Changjiang Tunnel. This paper introduces the testing processes, including loading apparatuses, test contents, test cases, etc., and makes comparison with other shield lining structure tests conducted before, and finally gives some evaluations on the design of the tunnel.展开更多
Research on the distribution of smoke in tunnels is significant for the fire emergency rescue after an operating metro train catches fire. A dynamic grid technique was adopted to research the law of smoke flow diffusi...Research on the distribution of smoke in tunnels is significant for the fire emergency rescue after an operating metro train catches fire. A dynamic grid technique was adopted to research the law of smoke flow diffusion inside the tunnel when the bottom of a metro train was on fire and to compare the effect of longitudinal ventilation modes on the smoke motion when the burning train stopped. Research results show that the slipstream curves around the train obtained by numerical simulation are consistent with experimental data. When the train decelerates, the smoke flow first extends to the tail of the train. With the decrease of the train's speed, the smoke flow diffuses to the head of the train. After the train stops, the slipstream around the train formed in the process of train operation plays a leading role in the smoke diffusion in the tunnel. The smoke flow quickly diffuses to the domain in front of the train. After forward mechanical ventilation is provided, the smoke flow inside the tunnel continues to diffuse downstream. When reverse mechanical ventilation operates, the smoke in front of the train flows back rapidly and diffuses to the rear of the train.展开更多
Generally hidden from public view, out of our daily thoughts, and literally under our feet, are myriad urban underground tunnels that make our modern megacities possible. From their ancient beginnings in antiquity, as...Generally hidden from public view, out of our daily thoughts, and literally under our feet, are myriad urban underground tunnels that make our modern megacities possible. From their ancient beginnings in antiquity, as a means of supplying fresh water and draining waste water from cities, underground tunnels evolved into a means of providing high capacity rail mass transit in our most densely populated urban centers. This paper provides a broad overview of the evolution of urban tunnels across a 6000 year time span and includes the specific engineering formulas/computations for the earliest 19th century subways/infrastructure projects based on the Roman vaulted arch tunnel.展开更多
Large cross-section tunnel construction induces ground surface settlements, potentially endangering both subterranean projects and nearby above-ground structures. A novel tunnel construction method, known as the suspe...Large cross-section tunnel construction induces ground surface settlements, potentially endangering both subterranean projects and nearby above-ground structures. A novel tunnel construction method, known as the suspension method,is introduced in this paper to mitigate surface settlement. The suspension method employs vertical tie rods to establish a structural connection between the initial tunnel support system and the surface steel beam, thereby exerting effective control settlements. To analyze the performance of the proposed method, systematic numerical simulations were conducted based on the practical engineering of Harbin Subway Line 3. The surface settlement and vault settlement characteristics during construction are investigated. The results show a gradual increment in both surface and vault settlement throughout the construction process, culminating in a stabilized state upon the completion of construction.In addition, compared to the double-side drift method and the Cross Diaphragm Method(CRD) method, the suspension method can obviously reduce the surface settlement and vault settlement. Moreover, the surface settlements and the axial force of tie rods were continuously monitored during the construction process at the trial tunnel block.These specific monitoring measurements are illustrated in comparison to numerical analysis results. The monitored results show great agreement with the numerical predictions, confirming the success of the project. This research can serve as a valuable practical reference for similar projects, offering insights and guidance for addressing ground surface settlements and enhancing construction safety in the domain of large cross-section tunneling.展开更多
Effect of different fire strengths on the smoke distribution in the subway station is investigated. Shin-Gum-Ho station (line #5) in Seoui is selected as a case study for variation of CO (carbon monoxide) distribu...Effect of different fire strengths on the smoke distribution in the subway station is investigated. Shin-Gum-Ho station (line #5) in Seoui is selected as a case study for variation of CO (carbon monoxide) distribution caused by the fire in the platform. The ventilation in the station is set to be an air supply mod in the lobby and an air exhaustion mod in the platform. One-side main tunnel ventilation (7,000 m3/min) is applied to operate in the tunnel. The fire is assumed to break out in the middle of train parked in the platform tunnel. Two kinds of fire strength are used. One is 10 MW and the other is 20 MW. Ventilation diffusers in the station are modeled as 317 square shapes & four rectangular shapes in the lobby and platform. The total of 7.5 million grids is generated and whole domain is divided to 22 blocks for parallel computation. Large eddy simulation method is applied to solve the momentum equation. The behavior of CO is calculated according to different fire strengths and compared with each other.展开更多
基金funded by the Scientific Research Startup Foundation of Fujian University of Technology (GY-Z21067 and GY-Z21026).
文摘In the realm of subway shield tunnel operations,the impact of tunnel settlement on the operational performance of subway vehicles is a crucial concern.This study introduces an advanced analytical model to investigate rail geometric deformations caused by settlement within a vehicle-track-tunnel coupled system.The model integrates the geometric deformations of the track,attributed to settlement,as track irregularities.A novel“cyclic model”algorithm was employed to enhance computational efficiency without compromising on precision,a claim that was rigorously validated.The model’s capability extends to analyzing the time-history responses of vehicles traversing settlement-affected areas.The research primarily focuses on how settlement wavelength,amplitude,and vehicle speed influence operational performance.Key findings indicate that an increase in settlement wavelength can improve vehicle performance,whereas a rise in amplitude can degrade it.The study also establishes settlement thresholds,based on vehicle operation comfort and safety.These insights are pivotal for maintaining and enhancing the safety and efficiency of subway systems,providing a valuable framework for urban infrastructure management and long-term maintenance strategies in metropolitan transit systems.
文摘Subway tunnels often suffer from surface pathologies such as cracks,corrosion,fractures,peeling,water and sand infiltration,and sudden hazards caused by foreign object intrusions.Installing a mobile visual pathology sensing system at the front end of operating trains is a critical measure to ensure subway safety.Taking leakage as the typical pathology,a tunnel pathology automatic visual detection method based on Deeplabv3+(ASTPDS)was proposed to achieve automatic and high-precision detection and pixel-level morphology extraction of pathologies.Compared with similar methods,this approach showed significant advantages and achieved a detection accuracy of 93.12%,surpassing FCN and U-Net.Moreover,it also exceeded the recall rates for detecting leaks of FCN and U-Net by 8.33%and 8.19%,respectively.
文摘Urban infrastructure has become more complex with the rapid development of urban transportation networks.In urban environments with limited space,construction of facilities like subways and bridges may mutually influence each other,especially when subway construction requires passing under bridges.In such cases,pile foundation replacement technology is often necessary.However,this technology is highly specialized,with a lengthy and risky construction period,and high costs.Personnel must be proficient in key technical aspects to ensure construction quality.This article discusses the technical principle,construction process,and core technology of pile foundation replacement,along with the application of this technology in subway tunnel crossing bridge projects,supported by engineering examples for reference.
文摘As the urban populations grow,the number and size of subway construction projects are increasing while also meeting higher construction standards.So,subway construction projects must have a better understanding of construction technology.This article focuses on the construction technology of the subway tunnel expansion under the bridge foundation.By analyzing the engineering characteristics of the bridge foundation and using a project as an example,this article provides a detailed discussion of the construction process of tunnel expansion under a bridge foundation.This article aims to serve as a reference for subway tunnel construction in China to ensure the key points of construction technology are understood,thus improving construction quality and laying a solid technical foundation for the sustainable development of urban rail engineering.
基金supported in part by the NSFC project under grant No.61132003the Fundamental Research Funds for the Central Universities(2013JBZ002)the Ph.D.Program Foundation of Ministry of Education of China under grant No.20120009130002
文摘There is an increasing demand on wireless communications in subway tunnels to provide video surveillance and sensory data for security,maintenance and train control,and to offer various communication or entertainment services(e.g.,Internet,etc.) to passengers as well.The wireless channel in tunnels is quite unique due to the confined space and the waveguide effects.Therefore,modeling the radio channel characteristics in tunnels is critically important for communication systems design or optimization.This paper investigates the key radio channel characteristics of a subway tunnel at 2.4 GHz and 5 GHz,such as the path loss,root mean square(RMS) delay spread,channel stationarity,Doppler shift,and channel capacity.The field measurements show that channel characteristics in tunnels are highly location-dependent and there exist abundant components in Doppler shift domain.In the straight section of the subway tunnel,the measured path loss exponents are close to1.6,lower than that in free space.
基金supported by the Fundamental Research for the Central Universities (SWJTU11ZT33)the Funds for the development of Innovation team of Ministry of Education (IRT0955)
文摘Predicting and estimating the response of sub- way tunnel to adjacent excavation of foundation pit is a research focus in the field of underground engineering. Based on the principle of two-stage method and incre- mental method, an analytic approach is suggested in this paper to solve this problem in an accurate and rapid way, and the upheavals of tunnel due to adjacent excavation are solved by analytic method. Besides, the presented method is used in the practical engineering case of Shenzhen Metro Line 11 and verified by numerical simulation and in situ measurement. Finally, a parametric analysis is performed to investigate the influence of different factors on tunnel's deflection. Some useful conclusions have been drawn from the research as below: The deflection results of tunnel obtained from analytic method are nearly consistent with the results getting from numerical analysis and measured data, which verified the accuracy and rationality of pre- sented method. The excavation size has a significant impact on both the displacement values and influenced range of tunnel. However, the relative distance only impacts the displacement values of tunnel, but not the influenced range of tunnel. It may provide certain reference to analyze the deflection of subway tunnel influenced by adjacent excavation.
基金The National Natural Science Foundation of China(No.41572276)the National Key Research and Development Program of China(No.2017YFC0805400).
文摘For the tunnel crossing active fault,the damage induced by fault movement is always serious.To solve such a problem,a detailed anti-faulting tunnel design process for Urumqi subway line 2 was introduced,and seven three-dimensional elastic-plastic finite element models were established.The anti-faulting design process included three steps.First,the damage of tunnel lining from different locations of fault rupture surfaces was analyzed.Then,the analysis of the effect on tunnel buried depth was given.Finally,the effect of the disaster mitigation method on the flexible joint was verified and the location of the flexible joint was discussed.The results show that when the properties of surrounding rock at the tunnel bottom grows soft,the tunnel deformation curve is smoother and tunnel damage induced by fault movement is less serious.The vertical displacement change ratio of secondary linings along the tunnel axis may be the main factor to cause shear damage to the tunnel.The interface between the hanging wall and fracture zone is defined as the most adverse fault rupture surface.The tunnel damage was reduced with the decrease in the tunnel buried depth as more energy was dissipated by overburden soil and the differential uplift zone of soil became more diffuse.The method of the flexible joint can reduce the tunnel damage significantly and the disaster mitigation effect of different locations on the flexible joint is different.The tunnel damage is reduced by the greatest degree when the flexible joint is located on the fault rupture surface.
文摘Given the increasingly notable segmentation of underground space by existing subway tunnels, it is dif- ficult to effectively and adequately develop and utilize underground space in busy parts of a city. This study presents a combined construction technology that has been developed for use in underground spaces; it includes a deformation buffer layer, a special grouting technique, jump excavation by compart- ment, back-pressure portal frame technology, a reinforcement technique, and the technology of a steel portioning drum or plate. These technologies have been successfully used in practical engineering. The combined construction technology presented in this paper provides a new method of solving key techni- cal problems in underground spaces in effectively used cross-subway tunnels. As this technology has achieved significant economic and social benefits, it has valuable future applications.
文摘Fire-driven flow analysis in the underground subway station has been performed with various main tunnel ventilations. Shin-gum-ho station (depth: 46 m) in Seoul is selected as a simulation model. The ventilation mode is assumed to be emergency state. Various main tunnel ventilations are applied to operate in a proper way for helping of smoke exhaustion in platform. The entire station is covered for simulation. Ventilation diffusers are modeled as 95 square shapes of 0.6 m × 0.6 m in the lobby and as 222 square shapes of 0.6 m × 0.6 m and four rectangular shapes of 1.2 m × 0.8 m in the platform. The total of 7.5 million grids is generated and whole domain is divided to 22 blocks for MPI (massage passing interface) efficiency of calculation. LES (large eddy simulation) is applied to solve the momentum equation. Smagorinsky model (Cs = 0.2) is used as SGS (subgrid scale) model. The distribution of CO (carbon monoxide) is calculated for various capacity of main tunnel ventilation and compared with each other.
文摘Moving IBM (immersed boundary method) is applied to analyze the relative motion of railway car flow in the single-bore subway tunnel with vertical ventilation. The tested car body is modeled by cylinder type body. The subway tunnel is assumed to be the single-car-passing straight type (single-bore tunnel). The modeled car is relatively moved forward. On the other hand, the tunnel and vertical ventilation are fixed. The momentum equations are solved by LES (large eddy simulation) method. The initial condition of fluid in the subway tunnel is stationary. The Reynolds number is 1,500 based on the cylinder radius. The turbulent flow field in the subway tunnel and vertical ventilation shaft are to be qualitatively investigated.
基金supported by the National Natural Science Foundation of China (Grants No. 50909037,50879019,and 50879020)the Natural Science Foundation of Hohai University (Grant No. 2008426611),the Foundation for Introducing Talents of Hohai University (Grant No. 20080415)+1 种基金the National Science and Technology Pillar Program during the Eleventh Five-Year Plan Period (Grant No. 2008BAB29B08)the Fundamental Research Funds for the Central Universities (Grant No. 2010B01114)
文摘When subway tunnels are routed underneath rivers, riverbed scour may expose the structure, with potentially severe consequences. Thus, it is important to identify the maximum scour depth to ensure that the designed buried depth is adequate. There are a range of methods that may be applied to this problem, including the fluvial process analysis method, geological structure analysis method, scour formula method, scour model experiment method, and numerical simulation method. However, the application ranges and forecasting precision of these methods vary considerably. In order to quantitatively analyze the characteristics of the different methods, a subway tunnel passing underneath a river was selected, and the aforementioned five methods were used to forecast the maximum scour depth. The fluvial process analysis method was used to characterize the river regime and evolution trend, which were the baseline for examination of the scour depth of the riverbed. The results obtained from the scour model experiment and the numerical simulation methods are reliable; these two methods are suitable for application to tunnel projects passing underneath rivers. The scour formula method was less accurate than the scour model experiment method; it is suitable for application to lower risk projects such as pipelines. The results of the geological structure analysis had low precision; the method is suitable for use as a secondary method to assist other research methods. To forecast the maximum scour depth of the riverbed above the subway tunnel, a combination of methods is suggested, and the appropriate analysis method should be chosen with respect to the local conditions.
文摘Shanghai Changjiang Tunnel, 15 m in diameter, is one of the world's largest shield-driven tunnels in diameter. Tongji University has recently carried out a test on the full-scale three-ring lining structure of Changjiang Tunnel. This paper introduces the testing processes, including loading apparatuses, test contents, test cases, etc., and makes comparison with other shield lining structure tests conducted before, and finally gives some evaluations on the design of the tunnel.
基金Project(U1134203)supported by the Major Program of the National Natural Science Foundation of ChinaProject(51105384)supported by the National Natural Science Foundation of China
文摘Research on the distribution of smoke in tunnels is significant for the fire emergency rescue after an operating metro train catches fire. A dynamic grid technique was adopted to research the law of smoke flow diffusion inside the tunnel when the bottom of a metro train was on fire and to compare the effect of longitudinal ventilation modes on the smoke motion when the burning train stopped. Research results show that the slipstream curves around the train obtained by numerical simulation are consistent with experimental data. When the train decelerates, the smoke flow first extends to the tail of the train. With the decrease of the train's speed, the smoke flow diffuses to the head of the train. After the train stops, the slipstream around the train formed in the process of train operation plays a leading role in the smoke diffusion in the tunnel. The smoke flow quickly diffuses to the domain in front of the train. After forward mechanical ventilation is provided, the smoke flow inside the tunnel continues to diffuse downstream. When reverse mechanical ventilation operates, the smoke in front of the train flows back rapidly and diffuses to the rear of the train.
文摘Generally hidden from public view, out of our daily thoughts, and literally under our feet, are myriad urban underground tunnels that make our modern megacities possible. From their ancient beginnings in antiquity, as a means of supplying fresh water and draining waste water from cities, underground tunnels evolved into a means of providing high capacity rail mass transit in our most densely populated urban centers. This paper provides a broad overview of the evolution of urban tunnels across a 6000 year time span and includes the specific engineering formulas/computations for the earliest 19th century subways/infrastructure projects based on the Roman vaulted arch tunnel.
基金supported by the Fundamental Research Funds for the Central Universities(2023JBZD004)the National Natural Science Foundation of China(U2034204,52078031)the Science and Technology Development Project of cccC Harbin Metro Investment and Construction Co.,Ltd.(ZJHD-FW-2018-01-086).
文摘Large cross-section tunnel construction induces ground surface settlements, potentially endangering both subterranean projects and nearby above-ground structures. A novel tunnel construction method, known as the suspension method,is introduced in this paper to mitigate surface settlement. The suspension method employs vertical tie rods to establish a structural connection between the initial tunnel support system and the surface steel beam, thereby exerting effective control settlements. To analyze the performance of the proposed method, systematic numerical simulations were conducted based on the practical engineering of Harbin Subway Line 3. The surface settlement and vault settlement characteristics during construction are investigated. The results show a gradual increment in both surface and vault settlement throughout the construction process, culminating in a stabilized state upon the completion of construction.In addition, compared to the double-side drift method and the Cross Diaphragm Method(CRD) method, the suspension method can obviously reduce the surface settlement and vault settlement. Moreover, the surface settlements and the axial force of tie rods were continuously monitored during the construction process at the trial tunnel block.These specific monitoring measurements are illustrated in comparison to numerical analysis results. The monitored results show great agreement with the numerical predictions, confirming the success of the project. This research can serve as a valuable practical reference for similar projects, offering insights and guidance for addressing ground surface settlements and enhancing construction safety in the domain of large cross-section tunneling.
文摘Effect of different fire strengths on the smoke distribution in the subway station is investigated. Shin-Gum-Ho station (line #5) in Seoui is selected as a case study for variation of CO (carbon monoxide) distribution caused by the fire in the platform. The ventilation in the station is set to be an air supply mod in the lobby and an air exhaustion mod in the platform. One-side main tunnel ventilation (7,000 m3/min) is applied to operate in the tunnel. The fire is assumed to break out in the middle of train parked in the platform tunnel. Two kinds of fire strength are used. One is 10 MW and the other is 20 MW. Ventilation diffusers in the station are modeled as 317 square shapes & four rectangular shapes in the lobby and platform. The total of 7.5 million grids is generated and whole domain is divided to 22 blocks for parallel computation. Large eddy simulation method is applied to solve the momentum equation. The behavior of CO is calculated according to different fire strengths and compared with each other.