Anthropogenic aerosols are effective radiative forcing agents that perturb the Earth’s climate. Major emission sources shifted from the western to eastern hemisphere around the 1980 s. An ensemble of single-forcing s...Anthropogenic aerosols are effective radiative forcing agents that perturb the Earth’s climate. Major emission sources shifted from the western to eastern hemisphere around the 1980 s. An ensemble of single-forcing simulations with an Earth System Model reveals two stages of aerosol-induced climate change in response to the global aerosol increase for 1940–1980 and the zonal shift of aerosol forcing for 1980–2020, respectively. Here, using idealized experiments with hierarchical models, we show that the aerosol increase and shift modes of aerosol-forced climate change are dynamically distinct, governed by the inter-hemispheric energy transport and basin-wide ocean–atmosphere interactions, respectively.The aerosol increase mode dominates in the motionless slab ocean model but is damped by ocean dynamics. Free of zonal-mean energy perturbation, characterized by an anomalous North Atlantic warming and North Pacific cooling, the zonal shift mode is amplified by interactive ocean dynamics through Bjerknes feedback. Both modes contribute to a La Ni?a-like pattern over the equatorial Pacific. We suggest that a global perspective that accommodates the evolving geographical distribution of aerosol emissions is vital for understanding the aerosol-forced historical climate change.展开更多
By establishing the discrete iterative mapping model of a current mode controlled buck-boost converter, this paper studies the mechanism of mode shift and stability control of the buck-boost converter operating in dis...By establishing the discrete iterative mapping model of a current mode controlled buck-boost converter, this paper studies the mechanism of mode shift and stability control of the buck-boost converter operating in discontinuous conduction mode with a ramp compensation current. With the bifurcation diagrazn, Lyapunov exponent spectrum, time- domain waveform and parameter space map, the performance of the buck-boost converter circuit utilizing a compensating ramp current has been analysed. The obtained results indicate that the system trajectory is weakly chaotic and strongly intermittent under discontinuous conduction mode. By using ramp compensation, the buck-boost converter can shift from discontinuous conduction mode to continuous conduction mode, and effectively operates in the stable period-one region.展开更多
The properties of C-H vibration softening for CH2 and CHa radicals absorbed on Cun(n=1-6) clusters have been investigated, using the density functional theory with hybrid functional. The results indicate that the ab...The properties of C-H vibration softening for CH2 and CHa radicals absorbed on Cun(n=1-6) clusters have been investigated, using the density functional theory with hybrid functional. The results indicate that the absorption of CH2 on Cu clusters is stronger than the case of CH3. The vibrational frequencies of C-H bonding agree with the experimental results obtained for CH2 and CH3 absorbed on Cu(111). With the increase of cluster size, the softening (Einstein shift) of C-H vibrational modes become stronger.展开更多
The analytical expression for the transmission spectra of coupled cavity waveguides (CCWs) in photonic crystals (PCs) is derived based on the coupled-mode theory (CMT). Parameters in the analytical expression ca...The analytical expression for the transmission spectra of coupled cavity waveguides (CCWs) in photonic crystals (PCs) is derived based on the coupled-mode theory (CMT). Parameters in the analytical expression can be extracted by simple numerical simulations. We reveal that it is the phase shift between the two adjacent PC defects that uniquely determines the flatness of the impurity bands of CCWs. In addition, it is found that the phase shift also greatly affects the bandwidth of CCWs. Thus, the engineering of the impurity bands of CCWs can be realized through the adjustment of the phase shift. Based on the theoretical results, an interesting phenomenon in which a CCW acts as a single PC defect and its impurity band possesses a Lorentz lineshape is predicted. Very good agreement between the analytical results and the numerical simulations based on transfer matrix method has been achieved.展开更多
In this study, two-section mode-locked semiconductor lasers with different numbers of quantum wells and different types of waveguide structures are made. Their ultrashort pulse features are presented. The spectral dyn...In this study, two-section mode-locked semiconductor lasers with different numbers of quantum wells and different types of waveguide structures are made. Their ultrashort pulse features are presented. The spectral dynamical behaviors in these lasers are studied in detail. In the simulation part, a two-band compressive-strained quantum well(QW) model is used to study thermally induced band-edge detuning in the amplifier and saturable absorber(SA). A sudden blue shift in laser spectrum is expected by calculating the peak of the net gain. In the experiment part, the sudden blue shift in the emission spectrum is observed in triple QW samples under certain operating conditions but remains absent in single QW samples.Experimental results reveal that blue shift phenomenon is connected with the difference between currents in two sections.Additionally, a threshold current ratio for blue-shift is also demonstrated.展开更多
基金supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2016R1A1A3A04005520 and 2017K2A9A1A06056874)supported by the National Science Foundation (AGS-1934392)+1 种基金The Community Earth System Model project is supported primarily by the National Science Foundation (NSF)supported by the National Center for Atmospheric Research, which is a major facility sponsored by the NSF under Cooperative Agreement (1852977)。
文摘Anthropogenic aerosols are effective radiative forcing agents that perturb the Earth’s climate. Major emission sources shifted from the western to eastern hemisphere around the 1980 s. An ensemble of single-forcing simulations with an Earth System Model reveals two stages of aerosol-induced climate change in response to the global aerosol increase for 1940–1980 and the zonal shift of aerosol forcing for 1980–2020, respectively. Here, using idealized experiments with hierarchical models, we show that the aerosol increase and shift modes of aerosol-forced climate change are dynamically distinct, governed by the inter-hemispheric energy transport and basin-wide ocean–atmosphere interactions, respectively.The aerosol increase mode dominates in the motionless slab ocean model but is damped by ocean dynamics. Free of zonal-mean energy perturbation, characterized by an anomalous North Atlantic warming and North Pacific cooling, the zonal shift mode is amplified by interactive ocean dynamics through Bjerknes feedback. Both modes contribute to a La Ni?a-like pattern over the equatorial Pacific. We suggest that a global perspective that accommodates the evolving geographical distribution of aerosol emissions is vital for understanding the aerosol-forced historical climate change.
基金Project supported by the National Natural Science Foundations of China (Grant Nos 50677056 and 60472059)
文摘By establishing the discrete iterative mapping model of a current mode controlled buck-boost converter, this paper studies the mechanism of mode shift and stability control of the buck-boost converter operating in discontinuous conduction mode with a ramp compensation current. With the bifurcation diagrazn, Lyapunov exponent spectrum, time- domain waveform and parameter space map, the performance of the buck-boost converter circuit utilizing a compensating ramp current has been analysed. The obtained results indicate that the system trajectory is weakly chaotic and strongly intermittent under discontinuous conduction mode. By using ramp compensation, the buck-boost converter can shift from discontinuous conduction mode to continuous conduction mode, and effectively operates in the stable period-one region.
文摘The properties of C-H vibration softening for CH2 and CHa radicals absorbed on Cun(n=1-6) clusters have been investigated, using the density functional theory with hybrid functional. The results indicate that the absorption of CH2 on Cu clusters is stronger than the case of CH3. The vibrational frequencies of C-H bonding agree with the experimental results obtained for CH2 and CH3 absorbed on Cu(111). With the increase of cluster size, the softening (Einstein shift) of C-H vibrational modes become stronger.
基金Project supported by the National Natural Science Foundation of China (Grant No 10374065), the Natural Science Foundation of Guangdong Province of China (Grant No 32050), the Ministry of Education of China (Grant No 204107), and the Department of Education of Guangdong Province of China (Grant No Z03033).
文摘The analytical expression for the transmission spectra of coupled cavity waveguides (CCWs) in photonic crystals (PCs) is derived based on the coupled-mode theory (CMT). Parameters in the analytical expression can be extracted by simple numerical simulations. We reveal that it is the phase shift between the two adjacent PC defects that uniquely determines the flatness of the impurity bands of CCWs. In addition, it is found that the phase shift also greatly affects the bandwidth of CCWs. Thus, the engineering of the impurity bands of CCWs can be realized through the adjustment of the phase shift. Based on the theoretical results, an interesting phenomenon in which a CCW acts as a single PC defect and its impurity band possesses a Lorentz lineshape is predicted. Very good agreement between the analytical results and the numerical simulations based on transfer matrix method has been achieved.
基金Project supported by the National Basic Research Program of China(Grant Nos.2013CB933304 and 2012CB932701)the National Natural Science Foundation of China(Grant Nos.61274125 and 61435012)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB01010200)
文摘In this study, two-section mode-locked semiconductor lasers with different numbers of quantum wells and different types of waveguide structures are made. Their ultrashort pulse features are presented. The spectral dynamical behaviors in these lasers are studied in detail. In the simulation part, a two-band compressive-strained quantum well(QW) model is used to study thermally induced band-edge detuning in the amplifier and saturable absorber(SA). A sudden blue shift in laser spectrum is expected by calculating the peak of the net gain. In the experiment part, the sudden blue shift in the emission spectrum is observed in triple QW samples under certain operating conditions but remains absent in single QW samples.Experimental results reveal that blue shift phenomenon is connected with the difference between currents in two sections.Additionally, a threshold current ratio for blue-shift is also demonstrated.