期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
局部紧右(左)简单半群上概率测度卷积序列的SHIFT收敛性 被引量:1
1
作者 徐侃 《湖北师范学院学报(自然科学版)》 1991年第1期35-39,共5页
当S为第二可数局部紧Hausdorff拓扑群时,Csiszar在[1]中给出了S上正则概率测度卷积序列Shift收敛性的一个判据,不少作者曾致力于这一结果在拓扑结构上的改进,本文则是在代数结构上推广了Csiszar的这一结果。
关键词 简单半群 卷积序列 shift收敛
下载PDF
Inner iterations in the shift-invert residual Arnoldi method and the Jacobi-Davidson method
2
作者 JIA ZhongXiao LI Cen 《Science China Mathematics》 SCIE 2014年第8期1733-1752,共20页
We establish a general convergence theory of the Shift-Invert Residual Arnoldi(SIRA)method for computing a simple eigenvalue nearest to a given targetσand the associated eigenvector.In SIRA,a subspace expansion vecto... We establish a general convergence theory of the Shift-Invert Residual Arnoldi(SIRA)method for computing a simple eigenvalue nearest to a given targetσand the associated eigenvector.In SIRA,a subspace expansion vector at each step is obtained by solving a certain inner linear system.We prove that the inexact SIRA method mimics the exact SIRA well,i.e.,the former uses almost the same outer iterations to achieve the convergence as the latter does if all the inner linear systems are iteratively solved with low or modest accuracy during outer iterations.Based on the theory,we design practical stopping criteria for inner solves.Our analysis is on one step expansion of subspace and the approach applies to the Jacobi-Davidson(JD)method with the fixed targetσas well,and a similar general convergence theory is obtained for it.Numerical experiments confirm our theory and demonstrate that the inexact SIRA and JD are similarly effective and are considerably superior to the inexact SIA. 展开更多
关键词 subspace expansion expansion vector inexact low or modest accuracy the SIRA method the JD method inner iteration outer iteration
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部