The output-signal models and impulse response shaping(IRS)functions of semiconductor detectors are important for establishing high-precision measurement systems.In this paper,an output-signal model for semiconductor d...The output-signal models and impulse response shaping(IRS)functions of semiconductor detectors are important for establishing high-precision measurement systems.In this paper,an output-signal model for semiconductor detector systems is proposed.According to the proposed model,a multistage cascade deconvolution IRS algorithm was developed using the C-R inverse system,R-C inverse system,and differentiator system.The silicon drift detector signals acquired from the analog-to-digital converter were tested.The experimental results indicated that the shaped pulses obtained using the proposed model had no undershoot,and the average peak base width of the output shaped pulses was reduced by 36%compared with that for a simple model proposed in a previous work[1].Offline processing results indicated that compared with the traditional IRS algorithm,the average peak base width of the output shaped pulses obtained using the proposed algorithm was reduced by 11%,and the total elapsed time required for pulse shaping was reduced by 26%.The proposed algorithm avoids recursive calculation.If the sampling frequency of the digital system reaches 100 MHz,the proposed algorithm can be simplified to integer arithmetic.The proposed IRS algorithm can be applied to high-resolution energy spectrum analysis,highcounting rate energy spectrum correction,and coincidence and anti-coincidence measurements.展开更多
The predictive model is built according to the characteristics of the impulse response of integrating process. In order to eliminate the permanent offset between the setpoint and the process output in the presence of ...The predictive model is built according to the characteristics of the impulse response of integrating process. In order to eliminate the permanent offset between the setpoint and the process output in the presence of the load disturbance, a novel error compensation method is proposed. Then predictive functional control of integrating process is designed. The method given generates a simple control structure, which can significandy reduce online computation. Furthermore, the tuning of the controller is fairly straightforward. Simulation results indicate that the designed control system is relatively robust to the parameters variation of the process.展开更多
In this paper, the time reversal processes of impulse response of crust are simulated by means of a dynamical finite element method (DFEM). The results indicate that a small undulating load during a long period may ca...In this paper, the time reversal processes of impulse response of crust are simulated by means of a dynamical finite element method (DFEM). The results indicate that a small undulating load during a long period may cause a focused brevity impact in a chaos-response system. The physical principle for this phenomenon is that the wave interferes or multiples superposition. Based on this knowledge, a new view toward the mechanism for preparing and triggering an earthquake is proposed. Finally, an interpretation of crust response to the sea tides is given.展开更多
Titanium nitride thin films were deposited on silicon by high power impulse magnetron sputtering(HiPIMS)method at different frequencies(162-637 Hz)and pulse-on time(60-322μs).Response surface methodology(RSM)was empl...Titanium nitride thin films were deposited on silicon by high power impulse magnetron sputtering(HiPIMS)method at different frequencies(162-637 Hz)and pulse-on time(60-322μs).Response surface methodology(RSM)was employed to study the simultaneous effect of frequency and pulse-on time on the current waveforms and the crystallographic orientation,microstructure,and in particular,the deposition rate of titanium nitride at constant time and average power equal to 250 W.The crystallographic structure and morphology of deposited films were analyzed using XRD and FESEM,respectively.It is found that the deposition rate of HiPIMS samples is tremendously dependent on pulse-on time and frequency of pulses where the deposition rate changes from 4.5 to 14.5 nm/min.The regression equations and analyses of variance(ANOVA)reveal that the maximum deposition rate(equal to(17±0.8)nm/min)occurs when the frequency is 537 Hz and pulse-on time is 212μs.The experimental measurement of the deposition rate under this condition gives rise to the deposition rate of 16.7 nm/min that is in good agreement with the predicted value.展开更多
A new customization approach based on support vector regression (SVR) is proposed to obtain individual headrelated impulse response (HRIR) without complex measurement and special equipment. Principal component ana...A new customization approach based on support vector regression (SVR) is proposed to obtain individual headrelated impulse response (HRIR) without complex measurement and special equipment. Principal component analysis (PCA) is first applied to obtain a few principal components and corresponding weight vectors correlated with individual anthropometric parameters. Then the weight vectors act as output of the nonlinear regression model. Some measured anthropometric parameters are selected as input of the model according to the correlation coefficients between the parameters and the weight vectors. After the regression model is learned from the training data, the individual HRIR can be predicted based on the measured anthropometric parameters. Compared with a back-propagation neural network (BPNN) for nonlinear regression, better generalization and prediction performance for small training samples can be obtained using the proposed PCA-SVR algorithm.展开更多
Hearing loss is a common military health problem and it is closely related to exposures to impulse noises from blast explosions and weapon firings. In a study based on test data of chinchillas and scaled to humans (Mi...Hearing loss is a common military health problem and it is closely related to exposures to impulse noises from blast explosions and weapon firings. In a study based on test data of chinchillas and scaled to humans (Military Medicine, 181: 59-69), an empirical injury model was constructed for exposure to multiple sound impulses of equal intensity. Building upon the empirical injury model, we conduct a mathematical study of the hearing loss injury caused by multiple impulses of non-uniform intensities. We adopt the theoretical framework of viewing individual sound exposures as separate injury causing events, and in that framework, we examine synergy for causing injury (fatigue) or negative synergy (immunity) or independence among a sequence of doses. Starting with the empirical logistic dose-response relation and the empirical dose combination rule, we show that for causing injury, a sequence of sound exposure events are not independent of each other. The phenomenological effect of a preceding event on the subsequent event is always immunity. We extend the empirical dose combination rule, which is applicable only in the case of homogeneous impulses of equal intensity, to accommodate the general case of multiple heterogeneous sound exposures with non-uniform intensities. In addition to studying and extending the empirical dose combination rule, we also explore the dose combination rule for the hypothetical case of independent events, and compare it with the empirical one. We measure the effect of immunity quantitatively using the immunity factor defined as the percentage of decrease in injury probability attributed to the sound exposure in the preceding event. Our main findings on the immunity factor are: 1) the immunity factor is primarily a function of the difference in SELA (A- weighted sound exposure level) between the two sound exposure events;it is virtually independent of the magnitude of the two SELA values as long as the difference is fixed;2) the immunity factor increases monotonically from 0 to 100% as the first dose is varied from being significantly below the second dose, to being moderately above the second dose. The extended dose-response formulation developed in this study provides a theoretical framework for assessing the injury risk in realistic situations.展开更多
This paper proposes the continuous-time singular value decomposition (SVD) for the impulse response function, a special kind of Green’s functions, in order to find a set of singular functions and singular values so t...This paper proposes the continuous-time singular value decomposition (SVD) for the impulse response function, a special kind of Green’s functions, in order to find a set of singular functions and singular values so that the convolutions of such function with the set of singular functions on a specified domain are the solutions to the inhomogeneous differential equations for those singular functions. A numerical example was illustrated to verify the proposed method. Besides the continuous-time SVD, a discrete-time SVD is also presented for the impulse response function, which is modeled using a Toeplitz matrix in the discrete system. The proposed method has broad applications in signal processing, dynamic system analysis, acoustic analysis, thermal analysis, as well as macroeconomic modeling.展开更多
Two non-probabilistic, set-theoretical methods for determining the maximum and minimum impulsive responses of structures to uncertain-but-bounded impulses are presented. They are, respectively, based on the theories o...Two non-probabilistic, set-theoretical methods for determining the maximum and minimum impulsive responses of structures to uncertain-but-bounded impulses are presented. They are, respectively, based on the theories of interval mathematics and convex models. The uncertain-but-bounded impulses are assumed to be a convex set, hyper-rectangle or ellipsoid. For the two non-probabilistic methods, less prior information is required about the uncertain nature of impulses than the probabilistic model. Comparisons between the interval analysis method and the convex model, which are developed as an anti-optimization problem of finding the least favorable impulsive response and the most favorable impulsive response, are made through mathematical analyses and numerical calculations. The results of this study indicate that under the condition of the interval vector being determined from an ellipsoid containing the uncertain impulses, the width of the impulsive responses predicted by the interval analysis method is larger than that by the convex model; under the condition of the ellipsoid being determined from an interval vector containing the uncertain impulses, the width of the interval impulsive responses obtained by the interval analysis method is smaller than that by the convex model.展开更多
In this paper, we consider a new Monod type chemostat model with time delay and impulsive input concentration of the nutrient in a polluted environment. Using the discrete dynamical system determined by the stroboscop...In this paper, we consider a new Monod type chemostat model with time delay and impulsive input concentration of the nutrient in a polluted environment. Using the discrete dynamical system determined by the stroboscopic map, we obtain a "microorganism-extinction" periodic solution. Further, we establish the sufficient conditions for the global attractivity of the microorganism-extinction periodic solution. Using new computational techniques for impulsive and delayed differential equation, we prove that the system is permanent under appropriate conditions. Our results show that time delay is "profitless".展开更多
To design approximately linear-phase complex coefficient finite impulse response (FIR) digital filters with arbitrary magnitude and group delay responses, a novel neural network approach is studied. The approach is ...To design approximately linear-phase complex coefficient finite impulse response (FIR) digital filters with arbitrary magnitude and group delay responses, a novel neural network approach is studied. The approach is based on a batch back-propagation neural network algorithm by directly minimizing the real magnitude error and phase error from the linear-phase to obtain the filter's coefficients. The approach can deal with both the real and complex coefficient FIR digital filters design problems. The main advantage of the proposed design method is the significant reduction in the group delay error. The effectiveness of the proposed method is illustrated with two optimal design examples.展开更多
Negative step response experimental method is used in wrist force sensor's dynamic performance calibration. The exciting manner of negative step response method is the same as wrist force sensor's load in working. T...Negative step response experimental method is used in wrist force sensor's dynamic performance calibration. The exciting manner of negative step response method is the same as wrist force sensor's load in working. This experimental method needn't special experiment equipments. Experiment's dynamic repeatability is good. So wrist force sensor's dynamic performance is suitable to be calibrated by negative step response method. A new correlation wavelet transfer method is studied. By wavelet transfer method, the signal is decomposed into two dimensional spaces of time-frequency. So the problem of negative step exciting energy concentrating in the low frequency band is solved. Correlation wavelet transfer doesn't require that wavelet primary function be orthogonal and needn't wavelet reconstruction. So analyzing efficiency is high. An experimental bench is designed and manufactured to load the wrist force sensor orthogonal excitation force/moment. A piezoelectric force sensor is used to setup soft trigger and calculate the value of negative step excitation. A wrist force sensor is calibrated. The pulse response function is calculated after negative step excitation and step response have been transformed to positive step excitation and step response. The pulse response function is transferred to frequency response function. The wrist force sensor's dynamic characteristics are identified by the frequency response function.展开更多
Vestibulo-ocular reflex(VOR) is an important biological reflex that controls eye movement to ensure clear vision while the head is in motion.Nowadays,VOR measurement is commonly done with a video head impulse test bas...Vestibulo-ocular reflex(VOR) is an important biological reflex that controls eye movement to ensure clear vision while the head is in motion.Nowadays,VOR measurement is commonly done with a video head impulse test based on a velocity gain algorithm or a position gain algorithm,in which velocity gain is a VOR calculation on head and eye velocity,whereas position gain is calculated from head and eye position.The aim of this work is first to compare the two algorithms' performance and to detect covert catch-up saccade,then to propose a stand-alone recommendation application for the patient's diagnosis.In the first experiment,for ipsilesional and contralesional sides,the calculated position gain(0.94±0.17) is higher than velocity gain(0.84±0.19).Moreover,gain asymmetry of both lesion and intact sides using velocity gain is mostly higher than that from using position gain(four out of five subjects).Consequently,for subjects who have unilateral vestibular neuritis diagnosed from clinical symptoms and a vestibular function test,vestibular weakness is depicted by velocity gain much better than by position gain.Covert catch-up saccade and position gain then are used as inputs for recommendation applications.展开更多
In this paper a new method to realize rational generalized transfer functions of linearshift-variant digital filters through state feedback is presented In some practical applications therequired characteristics of th...In this paper a new method to realize rational generalized transfer functions of linearshift-variant digital filters through state feedback is presented In some practical applications therequired characteristics of the filter change slowly.Under these circumstances,the proposedmethod is very effective and the resulting filter structure is simple.A numerical example isprovided to show the performance of the method.展开更多
We consider the hearing loss injury among subjects in a crowd with a wide spectrum of individual intrinsic injury probabilities due to biovariability. For multiple acoustic impulses, the observed injury risk of a crow...We consider the hearing loss injury among subjects in a crowd with a wide spectrum of individual intrinsic injury probabilities due to biovariability. For multiple acoustic impulses, the observed injury risk of a crowd vs the effective combined dose follows the logistic dose-response relation. The injury risk of a crowd is the average fraction of injured. The injury risk was measured in experiments as follows: each subject is individually exposed to a sequence of acoustic impulses of a given intensity and the injury is recorded;results of multiple individual subjects were assembled into data sets to mimic the response of a crowd. The effective combined dose was adjusted by varying the number of impulses in the sequence. The most prominent feature observed in experiments is that the injury risk of the crowd caused by multiple impulses is significantly less than the value predicted based on assumption that all impulses act independently in causing injury and all subjects in the crowd are statistically identical. Previously, in the case where all subjects are statistically identical (i.e., no biovariability), we interpreted the observed injury risk caused by multiple impulses in terms of the immunity effects of preceding impulses on subsequent impulses. In this study, we focus on the case where all sound exposure events act independently in causing injury regardless of whether one is preceded by another (i.e., no immunity effect). Instead, we explore the possibility of interpreting the observed logistic dose-response relation in the framework of biovariability of the crowd. Here biovariability means that subjects in the crowd have their own individual injury probabilities. That is, some subjects are biologically less or more susceptible to hearing loss injury than others. We derive analytically the distribution of individual injury probability that produces the observed logistic dose-response relation. For several parameter values, we prove that the derived distribution is mathematically a proper density function. We further study the asymptotic approximations for the density function and discuss their significance in practical numerical computation with finite precision arithmetic. Our mathematical analysis implies that the observed logistic dose-response relation can be theoretically explained in the framework of biovariability in the absence of immunity effect.展开更多
This paper presents the numerical solution of a viscoelastic continuous beam whose damping behaviours are defined in term of fractional derivatives of arbitrary order.Homotopy Perturbation Method(HPM)is used to obtain...This paper presents the numerical solution of a viscoelastic continuous beam whose damping behaviours are defined in term of fractional derivatives of arbitrary order.Homotopy Perturbation Method(HPM)is used to obtain the dynamic response with respect to unit impulse load.Obtained results are depicted in term of plots.Comparisons are made with the analytic solutions obtained by Zu-feng and Xiao-yan(2007)to show the effectiveness and validation of the present method.展开更多
Mechanotransduction refers to a physiological process by which mechanical forces, such as pressures exerted by ionized fluids on cell membranes and tissues, can trigger excitations of electrical natures that play impo...Mechanotransduction refers to a physiological process by which mechanical forces, such as pressures exerted by ionized fluids on cell membranes and tissues, can trigger excitations of electrical natures that play important role in the control of various sensory (i.e. stimuli-responsive) organs and homeostasis of living organisms. In this work, the influence of mechanotransduction processes on the generic mechanism of the action potential is investigated analytically, by considering a mathematical model that consists of two coupled nonlinear partial differential equations. One of these two equations is the Korteweg-de Vries equation governing the spatio-temporal evolution of the density difference between intracellular and extracellular fluids across the nerve membrane, and the other is Hodgkin-Huxley cable equation for the transmembrane voltage with a self-regulatory (i.e. diode-type) membrane capacitance. The self-regulatory feature here refers to the assumption that membrane capacitance varies with the difference in density of ion-carrying intracellular and extracellular fluids, thus ensuring an electromechanical feedback mechanism and consequently an effective coupling of the two nonlinear equations. The exact one-soliton solution to the density-difference equation is obtained in terms of a pulse excitation. With the help of this exact pulse solution the Hodgkin-Huxley cable equation is shown to transform, in steady state, to a linear eigenvalue problem some bound states of which can be obtained exactly. Few of such bound-state solutions are found analytically.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11975060,12005026,and 12075038)the Major Science and Technology Project in Sichuan Province(No.19ZDZD0137)the Sichuan Science and Technology Program(No.2020YFG0019).
文摘The output-signal models and impulse response shaping(IRS)functions of semiconductor detectors are important for establishing high-precision measurement systems.In this paper,an output-signal model for semiconductor detector systems is proposed.According to the proposed model,a multistage cascade deconvolution IRS algorithm was developed using the C-R inverse system,R-C inverse system,and differentiator system.The silicon drift detector signals acquired from the analog-to-digital converter were tested.The experimental results indicated that the shaped pulses obtained using the proposed model had no undershoot,and the average peak base width of the output shaped pulses was reduced by 36%compared with that for a simple model proposed in a previous work[1].Offline processing results indicated that compared with the traditional IRS algorithm,the average peak base width of the output shaped pulses obtained using the proposed algorithm was reduced by 11%,and the total elapsed time required for pulse shaping was reduced by 26%.The proposed algorithm avoids recursive calculation.If the sampling frequency of the digital system reaches 100 MHz,the proposed algorithm can be simplified to integer arithmetic.The proposed IRS algorithm can be applied to high-resolution energy spectrum analysis,highcounting rate energy spectrum correction,and coincidence and anti-coincidence measurements.
基金This work was supported by National Science Fundation of China (No.60274032)Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP) (No.20030248040)and Alexander von Humboldt Research Fellowship
文摘The predictive model is built according to the characteristics of the impulse response of integrating process. In order to eliminate the permanent offset between the setpoint and the process output in the presence of the load disturbance, a novel error compensation method is proposed. Then predictive functional control of integrating process is designed. The method given generates a simple control structure, which can significandy reduce online computation. Furthermore, the tuning of the controller is fairly straightforward. Simulation results indicate that the designed control system is relatively robust to the parameters variation of the process.
基金State Natural Science Foundation (49834002) and the science foundation of HUST (J151005).
文摘In this paper, the time reversal processes of impulse response of crust are simulated by means of a dynamical finite element method (DFEM). The results indicate that a small undulating load during a long period may cause a focused brevity impact in a chaos-response system. The physical principle for this phenomenon is that the wave interferes or multiples superposition. Based on this knowledge, a new view toward the mechanism for preparing and triggering an earthquake is proposed. Finally, an interpretation of crust response to the sea tides is given.
文摘Titanium nitride thin films were deposited on silicon by high power impulse magnetron sputtering(HiPIMS)method at different frequencies(162-637 Hz)and pulse-on time(60-322μs).Response surface methodology(RSM)was employed to study the simultaneous effect of frequency and pulse-on time on the current waveforms and the crystallographic orientation,microstructure,and in particular,the deposition rate of titanium nitride at constant time and average power equal to 250 W.The crystallographic structure and morphology of deposited films were analyzed using XRD and FESEM,respectively.It is found that the deposition rate of HiPIMS samples is tremendously dependent on pulse-on time and frequency of pulses where the deposition rate changes from 4.5 to 14.5 nm/min.The regression equations and analyses of variance(ANOVA)reveal that the maximum deposition rate(equal to(17±0.8)nm/min)occurs when the frequency is 537 Hz and pulse-on time is 212μs.The experimental measurement of the deposition rate under this condition gives rise to the deposition rate of 16.7 nm/min that is in good agreement with the predicted value.
基金Project supported by the Shanghai Natural Science Foundation (Grant No.08ZR1408300)the Shanghai Leading Academic Discipline Project (Grant No.S30108)
文摘A new customization approach based on support vector regression (SVR) is proposed to obtain individual headrelated impulse response (HRIR) without complex measurement and special equipment. Principal component analysis (PCA) is first applied to obtain a few principal components and corresponding weight vectors correlated with individual anthropometric parameters. Then the weight vectors act as output of the nonlinear regression model. Some measured anthropometric parameters are selected as input of the model according to the correlation coefficients between the parameters and the weight vectors. After the regression model is learned from the training data, the individual HRIR can be predicted based on the measured anthropometric parameters. Compared with a back-propagation neural network (BPNN) for nonlinear regression, better generalization and prediction performance for small training samples can be obtained using the proposed PCA-SVR algorithm.
文摘Hearing loss is a common military health problem and it is closely related to exposures to impulse noises from blast explosions and weapon firings. In a study based on test data of chinchillas and scaled to humans (Military Medicine, 181: 59-69), an empirical injury model was constructed for exposure to multiple sound impulses of equal intensity. Building upon the empirical injury model, we conduct a mathematical study of the hearing loss injury caused by multiple impulses of non-uniform intensities. We adopt the theoretical framework of viewing individual sound exposures as separate injury causing events, and in that framework, we examine synergy for causing injury (fatigue) or negative synergy (immunity) or independence among a sequence of doses. Starting with the empirical logistic dose-response relation and the empirical dose combination rule, we show that for causing injury, a sequence of sound exposure events are not independent of each other. The phenomenological effect of a preceding event on the subsequent event is always immunity. We extend the empirical dose combination rule, which is applicable only in the case of homogeneous impulses of equal intensity, to accommodate the general case of multiple heterogeneous sound exposures with non-uniform intensities. In addition to studying and extending the empirical dose combination rule, we also explore the dose combination rule for the hypothetical case of independent events, and compare it with the empirical one. We measure the effect of immunity quantitatively using the immunity factor defined as the percentage of decrease in injury probability attributed to the sound exposure in the preceding event. Our main findings on the immunity factor are: 1) the immunity factor is primarily a function of the difference in SELA (A- weighted sound exposure level) between the two sound exposure events;it is virtually independent of the magnitude of the two SELA values as long as the difference is fixed;2) the immunity factor increases monotonically from 0 to 100% as the first dose is varied from being significantly below the second dose, to being moderately above the second dose. The extended dose-response formulation developed in this study provides a theoretical framework for assessing the injury risk in realistic situations.
文摘This paper proposes the continuous-time singular value decomposition (SVD) for the impulse response function, a special kind of Green’s functions, in order to find a set of singular functions and singular values so that the convolutions of such function with the set of singular functions on a specified domain are the solutions to the inhomogeneous differential equations for those singular functions. A numerical example was illustrated to verify the proposed method. Besides the continuous-time SVD, a discrete-time SVD is also presented for the impulse response function, which is modeled using a Toeplitz matrix in the discrete system. The proposed method has broad applications in signal processing, dynamic system analysis, acoustic analysis, thermal analysis, as well as macroeconomic modeling.
基金The project supported by the National Outstanding Youth Science Foundation of China (10425208)the National Natural Science Foundation of ChinaInstitute of Engineering Physics of China (10376002) The English text was polished by Keren Wang
文摘Two non-probabilistic, set-theoretical methods for determining the maximum and minimum impulsive responses of structures to uncertain-but-bounded impulses are presented. They are, respectively, based on the theories of interval mathematics and convex models. The uncertain-but-bounded impulses are assumed to be a convex set, hyper-rectangle or ellipsoid. For the two non-probabilistic methods, less prior information is required about the uncertain nature of impulses than the probabilistic model. Comparisons between the interval analysis method and the convex model, which are developed as an anti-optimization problem of finding the least favorable impulsive response and the most favorable impulsive response, are made through mathematical analyses and numerical calculations. The results of this study indicate that under the condition of the interval vector being determined from an ellipsoid containing the uncertain impulses, the width of the impulsive responses predicted by the interval analysis method is larger than that by the convex model; under the condition of the ellipsoid being determined from an interval vector containing the uncertain impulses, the width of the interval impulsive responses obtained by the interval analysis method is smaller than that by the convex model.
基金Project supported by the National Natural Science Foundation of China(Nos.10471117 and 10771179)the Natural Science Foundation of Shandong University of Science and Technology(No.05g016)
文摘In this paper, we consider a new Monod type chemostat model with time delay and impulsive input concentration of the nutrient in a polluted environment. Using the discrete dynamical system determined by the stroboscopic map, we obtain a "microorganism-extinction" periodic solution. Further, we establish the sufficient conditions for the global attractivity of the microorganism-extinction periodic solution. Using new computational techniques for impulsive and delayed differential equation, we prove that the system is permanent under appropriate conditions. Our results show that time delay is "profitless".
基金supported by the National Natural Science Foundation of China(6087602250677014)+2 种基金the High-Tech Research and Development Program of China(2006AA04A104)the Hunan Provincial Natural Science Foundation of China (06JJ202407JJ5076).
文摘To design approximately linear-phase complex coefficient finite impulse response (FIR) digital filters with arbitrary magnitude and group delay responses, a novel neural network approach is studied. The approach is based on a batch back-propagation neural network algorithm by directly minimizing the real magnitude error and phase error from the linear-phase to obtain the filter's coefficients. The approach can deal with both the real and complex coefficient FIR digital filters design problems. The main advantage of the proposed design method is the significant reduction in the group delay error. The effectiveness of the proposed method is illustrated with two optimal design examples.
基金National Hi-tech Research and Development Program of China(863 Program,No.2001AA42330).
文摘Negative step response experimental method is used in wrist force sensor's dynamic performance calibration. The exciting manner of negative step response method is the same as wrist force sensor's load in working. This experimental method needn't special experiment equipments. Experiment's dynamic repeatability is good. So wrist force sensor's dynamic performance is suitable to be calibrated by negative step response method. A new correlation wavelet transfer method is studied. By wavelet transfer method, the signal is decomposed into two dimensional spaces of time-frequency. So the problem of negative step exciting energy concentrating in the low frequency band is solved. Correlation wavelet transfer doesn't require that wavelet primary function be orthogonal and needn't wavelet reconstruction. So analyzing efficiency is high. An experimental bench is designed and manufactured to load the wrist force sensor orthogonal excitation force/moment. A piezoelectric force sensor is used to setup soft trigger and calculate the value of negative step excitation. A wrist force sensor is calibrated. The pulse response function is calculated after negative step excitation and step response have been transformed to positive step excitation and step response. The pulse response function is transferred to frequency response function. The wrist force sensor's dynamic characteristics are identified by the frequency response function.
基金supported by the MSIP (Ministry of Science,ICT and Future Planning),Korea,under the ITRC (Information Technology Research Center)support program (IITP-2016-H8501-16-1019) supervised by the IITP (Institute for Information & Communications Technology Promotion) and Inha University Research Grantsupported by the Basic Science Research Program through the National Research Foundation (NRF) of Korea funded by the Ministry of Education (2010-0020163)
文摘Vestibulo-ocular reflex(VOR) is an important biological reflex that controls eye movement to ensure clear vision while the head is in motion.Nowadays,VOR measurement is commonly done with a video head impulse test based on a velocity gain algorithm or a position gain algorithm,in which velocity gain is a VOR calculation on head and eye velocity,whereas position gain is calculated from head and eye position.The aim of this work is first to compare the two algorithms' performance and to detect covert catch-up saccade,then to propose a stand-alone recommendation application for the patient's diagnosis.In the first experiment,for ipsilesional and contralesional sides,the calculated position gain(0.94±0.17) is higher than velocity gain(0.84±0.19).Moreover,gain asymmetry of both lesion and intact sides using velocity gain is mostly higher than that from using position gain(four out of five subjects).Consequently,for subjects who have unilateral vestibular neuritis diagnosed from clinical symptoms and a vestibular function test,vestibular weakness is depicted by velocity gain much better than by position gain.Covert catch-up saccade and position gain then are used as inputs for recommendation applications.
文摘In this paper a new method to realize rational generalized transfer functions of linearshift-variant digital filters through state feedback is presented In some practical applications therequired characteristics of the filter change slowly.Under these circumstances,the proposedmethod is very effective and the resulting filter structure is simple.A numerical example isprovided to show the performance of the method.
文摘We consider the hearing loss injury among subjects in a crowd with a wide spectrum of individual intrinsic injury probabilities due to biovariability. For multiple acoustic impulses, the observed injury risk of a crowd vs the effective combined dose follows the logistic dose-response relation. The injury risk of a crowd is the average fraction of injured. The injury risk was measured in experiments as follows: each subject is individually exposed to a sequence of acoustic impulses of a given intensity and the injury is recorded;results of multiple individual subjects were assembled into data sets to mimic the response of a crowd. The effective combined dose was adjusted by varying the number of impulses in the sequence. The most prominent feature observed in experiments is that the injury risk of the crowd caused by multiple impulses is significantly less than the value predicted based on assumption that all impulses act independently in causing injury and all subjects in the crowd are statistically identical. Previously, in the case where all subjects are statistically identical (i.e., no biovariability), we interpreted the observed injury risk caused by multiple impulses in terms of the immunity effects of preceding impulses on subsequent impulses. In this study, we focus on the case where all sound exposure events act independently in causing injury regardless of whether one is preceded by another (i.e., no immunity effect). Instead, we explore the possibility of interpreting the observed logistic dose-response relation in the framework of biovariability of the crowd. Here biovariability means that subjects in the crowd have their own individual injury probabilities. That is, some subjects are biologically less or more susceptible to hearing loss injury than others. We derive analytically the distribution of individual injury probability that produces the observed logistic dose-response relation. For several parameter values, we prove that the derived distribution is mathematically a proper density function. We further study the asymptotic approximations for the density function and discuss their significance in practical numerical computation with finite precision arithmetic. Our mathematical analysis implies that the observed logistic dose-response relation can be theoretically explained in the framework of biovariability in the absence of immunity effect.
文摘This paper presents the numerical solution of a viscoelastic continuous beam whose damping behaviours are defined in term of fractional derivatives of arbitrary order.Homotopy Perturbation Method(HPM)is used to obtain the dynamic response with respect to unit impulse load.Obtained results are depicted in term of plots.Comparisons are made with the analytic solutions obtained by Zu-feng and Xiao-yan(2007)to show the effectiveness and validation of the present method.
文摘Mechanotransduction refers to a physiological process by which mechanical forces, such as pressures exerted by ionized fluids on cell membranes and tissues, can trigger excitations of electrical natures that play important role in the control of various sensory (i.e. stimuli-responsive) organs and homeostasis of living organisms. In this work, the influence of mechanotransduction processes on the generic mechanism of the action potential is investigated analytically, by considering a mathematical model that consists of two coupled nonlinear partial differential equations. One of these two equations is the Korteweg-de Vries equation governing the spatio-temporal evolution of the density difference between intracellular and extracellular fluids across the nerve membrane, and the other is Hodgkin-Huxley cable equation for the transmembrane voltage with a self-regulatory (i.e. diode-type) membrane capacitance. The self-regulatory feature here refers to the assumption that membrane capacitance varies with the difference in density of ion-carrying intracellular and extracellular fluids, thus ensuring an electromechanical feedback mechanism and consequently an effective coupling of the two nonlinear equations. The exact one-soliton solution to the density-difference equation is obtained in terms of a pulse excitation. With the help of this exact pulse solution the Hodgkin-Huxley cable equation is shown to transform, in steady state, to a linear eigenvalue problem some bound states of which can be obtained exactly. Few of such bound-state solutions are found analytically.