[Objective] This study aimed to establish a real-time PCR method for de- tecting stx2 gene in Shiga toxin-producing E. coli (STEC). [Method] According to the known STEC stx2 gene sequences published in GenBank, PCR ...[Objective] This study aimed to establish a real-time PCR method for de- tecting stx2 gene in Shiga toxin-producing E. coli (STEC). [Method] According to the known STEC stx2 gene sequences published in GenBank, PCR primers and probes were designed based on the conserved region to construct recombinant plasmid as a positive template, thus optimizing the reaction conditions and establishing the real- time PCR method. [Result] A standard curve was established based on the opti- mized real-time PCR system, indicting a good linear correlation between the initial template concentration and Ct value, with the correlation coefficient F^e of above 0.995. The established method had a good specificity, without non-specific amplifica- tion for 10 non-STEC intestinal bacterial strains; the detection limit of initial template was 1.0x102 copies/μI, indicating a high sensitivity; furthermore, the coefficients of variation within and among batches were lower than 1% and 5% respectively, sug- gesting a good repeatability. [Conclusion] In this study, a real-time PCR method was successfully established for detecting STEC stx2 gene, which provided technical means for rapid detection of STEC in samples.展开更多
Objective:To identify the specific integration site of prophage φ297 in the host of E. coli K12 chromosome. Methods:Using molecular techniques such as Siebert PCR for walking from the int gene of prophage 297, which ...Objective:To identify the specific integration site of prophage φ297 in the host of E. coli K12 chromosome. Methods:Using molecular techniques such as Siebert PCR for walking from the int gene of prophage 297, which is similar to that of phage 933W to an unknown region in genomic DNA. A special adaptor is ligated to the ends of DNA fragments generated by digestion of genomic DNA with restriction enzymes that generates blunt ended fragments. Clone and subclone of PCR products, DNA sequencing and data analysis were used in this study. Results:The attL, attR and the core sequences were determined. The bacterial attachment site of phage φ297 was located in the yecE gene of E. coli K12. Conclusion:The phage φ297 integrates into the yecE gene of the E. coli K12 genome.展开更多
The three parts(Stx17B, Stx27B and StxB) of Shiga toxin B subunit have been fused into a cell surface exposed loop of the LamB protein at a BamH I site between residues 153 and 154. Western blotting revealed that the ...The three parts(Stx17B, Stx27B and StxB) of Shiga toxin B subunit have been fused into a cell surface exposed loop of the LamB protein at a BamH I site between residues 153 and 154. Western blotting revealed that the three parts of Shiga toxin B subunit could be expressed as the Lamb fusion proteins in E. coli. Indirect immunofluorescence and immunoelectron microscopy analyses showed fusion proteins LamB/Stx17B and LamB/Stx27B could be expressed at cell surface in E. coli, but fusion protein LamB/StxB could not be expressed at cell surface; it was aggregated in cytoplasm and was toxic to host. This expression system provided a new way to construct an oral live vaccine against Shigella dysenteriae 1.展开更多
基金Supported by Agricultural Science and Technology Support Program(Social Development)of Jiangsu Province(BE2011771)~~
文摘[Objective] This study aimed to establish a real-time PCR method for de- tecting stx2 gene in Shiga toxin-producing E. coli (STEC). [Method] According to the known STEC stx2 gene sequences published in GenBank, PCR primers and probes were designed based on the conserved region to construct recombinant plasmid as a positive template, thus optimizing the reaction conditions and establishing the real- time PCR method. [Result] A standard curve was established based on the opti- mized real-time PCR system, indicting a good linear correlation between the initial template concentration and Ct value, with the correlation coefficient F^e of above 0.995. The established method had a good specificity, without non-specific amplifica- tion for 10 non-STEC intestinal bacterial strains; the detection limit of initial template was 1.0x102 copies/μI, indicating a high sensitivity; furthermore, the coefficients of variation within and among batches were lower than 1% and 5% respectively, sug- gesting a good repeatability. [Conclusion] In this study, a real-time PCR method was successfully established for detecting STEC stx2 gene, which provided technical means for rapid detection of STEC in samples.
文摘Objective:To identify the specific integration site of prophage φ297 in the host of E. coli K12 chromosome. Methods:Using molecular techniques such as Siebert PCR for walking from the int gene of prophage 297, which is similar to that of phage 933W to an unknown region in genomic DNA. A special adaptor is ligated to the ends of DNA fragments generated by digestion of genomic DNA with restriction enzymes that generates blunt ended fragments. Clone and subclone of PCR products, DNA sequencing and data analysis were used in this study. Results:The attL, attR and the core sequences were determined. The bacterial attachment site of phage φ297 was located in the yecE gene of E. coli K12. Conclusion:The phage φ297 integrates into the yecE gene of the E. coli K12 genome.
文摘The three parts(Stx17B, Stx27B and StxB) of Shiga toxin B subunit have been fused into a cell surface exposed loop of the LamB protein at a BamH I site between residues 153 and 154. Western blotting revealed that the three parts of Shiga toxin B subunit could be expressed as the Lamb fusion proteins in E. coli. Indirect immunofluorescence and immunoelectron microscopy analyses showed fusion proteins LamB/Stx17B and LamB/Stx27B could be expressed at cell surface in E. coli, but fusion protein LamB/StxB could not be expressed at cell surface; it was aggregated in cytoplasm and was toxic to host. This expression system provided a new way to construct an oral live vaccine against Shigella dysenteriae 1.