Sample size determination typically relies on a power analysis based on a frequentist conditional approach. This latter can be seen as a particular case of the two-priors approach, which allows to build four distinct ...Sample size determination typically relies on a power analysis based on a frequentist conditional approach. This latter can be seen as a particular case of the two-priors approach, which allows to build four distinct power functions to select the optimal sample size. We revise this approach when the focus is on testing a single binomial proportion. We consider exact methods and introduce a conservative criterion to account for the typical non-monotonic behavior of the power functions, when dealing with discrete data. The main purpose of this paper is to present a Shiny App providing a user-friendly, interactive tool to apply these criteria. The app also provides specific tools to elicit the analysis and the design prior distributions, which are the core of the two-priors approach.展开更多
植被物候作为反映植被与气候变化关系的重要参量,具有重要的研究意义。本文基于R语言分布式架构Shiny构建了植被物候参数分析系统,可实现站点分布可视化、感兴趣区(Region of Interest,ROI)选取与绘制、植被指数计算与可视化、数据过滤...植被物候作为反映植被与气候变化关系的重要参量,具有重要的研究意义。本文基于R语言分布式架构Shiny构建了植被物候参数分析系统,可实现站点分布可视化、感兴趣区(Region of Interest,ROI)选取与绘制、植被指数计算与可视化、数据过滤、生长曲线轨迹拟合与物候参数提取等功能模块。用户可提取不同植被类型数码相机时间序列的植被指数,并用max方法进行平滑与去噪处理,然后选择合适的方法组合拟合植被群落季相变化轨迹,最终提取较为精确的关键物候参数。林地数据系统测试结果表明:1)相对绿度指数GI比其他相对植被指数和单波段的亮度值振幅明显,其时间序列可表征植被实际生长轨迹; 2)不同拟合方法与提取方法的组合效果不同,如klosterman与klosterman方法组合适合林地类型的植被物候参数提取,用户可综合均方根误差与季节群相变化轨迹结果,筛选出适合所选植被物候数据的拟合与物候参数提取方法组合。展开更多
文摘Sample size determination typically relies on a power analysis based on a frequentist conditional approach. This latter can be seen as a particular case of the two-priors approach, which allows to build four distinct power functions to select the optimal sample size. We revise this approach when the focus is on testing a single binomial proportion. We consider exact methods and introduce a conservative criterion to account for the typical non-monotonic behavior of the power functions, when dealing with discrete data. The main purpose of this paper is to present a Shiny App providing a user-friendly, interactive tool to apply these criteria. The app also provides specific tools to elicit the analysis and the design prior distributions, which are the core of the two-priors approach.
文摘植被物候作为反映植被与气候变化关系的重要参量,具有重要的研究意义。本文基于R语言分布式架构Shiny构建了植被物候参数分析系统,可实现站点分布可视化、感兴趣区(Region of Interest,ROI)选取与绘制、植被指数计算与可视化、数据过滤、生长曲线轨迹拟合与物候参数提取等功能模块。用户可提取不同植被类型数码相机时间序列的植被指数,并用max方法进行平滑与去噪处理,然后选择合适的方法组合拟合植被群落季相变化轨迹,最终提取较为精确的关键物候参数。林地数据系统测试结果表明:1)相对绿度指数GI比其他相对植被指数和单波段的亮度值振幅明显,其时间序列可表征植被实际生长轨迹; 2)不同拟合方法与提取方法的组合效果不同,如klosterman与klosterman方法组合适合林地类型的植被物候参数提取,用户可综合均方根误差与季节群相变化轨迹结果,筛选出适合所选植被物候数据的拟合与物候参数提取方法组合。